
PHY 3513 Fall 2000 – Information Concerning Mid-Term Exam 2

• The second mid-term will take place between 7:00 and 9:00 pm on Tuesday November 21.
The exam will be held in room NPB 1220.

• The exam will focus on material relating to Callen Chapters 3 and 4. However, due to the
cumulative nature of the course, the problems may also touch on earlier topics. You will
not be tested on Callen Sections 3.8, 4.8, or 4.9. In lieu of Sections 4.1–4.3 you should
familiarize yourself with the the discussion of quasistatic and reversible processes given in
lectures. Reversible heat engines will be covered, but not refrigerators, heat pumps, or
irreversible heat engines.

• You should bring a scientific calculator and pens/pencils to the exam. You will be per-
mitted to use the course text (Callen) and your lecture notes in the exam. However, you
must not consult any other written materials, such as homework solutions (either your
own or others’).

• The sample exam below is designed to give an idea of the level of the questions on the
Mid-Term. The sample exam will not be graded. Solutions will be distributed in class.

PHY 3513 Fall 1999 – Mid-Term Exam 2

This exam lasts 2 hours. Answer all four questions, which carry equal weight. To obtain full
credit, please explain your reasoning and show all working. Please write neatly and include
your name on the front page of your answers.

You are permitted to use the course text (Callen) and your lecture notes, but you may not
consult any other written materials (e.g., homework solutions).

You must not seek or obtain help on this exam from anyone other than the
proctor, nor must you assist anyone else.

1. The tension τ of a particular rubber band is found to obey the equations(
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where T is the temperature, L is the length, L0 is the unstretched length (at which
the tension vanishes), and a is a positive constant.

(a) Verify by calculating the mixed second partial derivatives of the tension that there
exists a well-defined state function τ(T, L).

(b) Integrate the two partial derivatives above to obtain τ(T, L). There should be no
undetermined constant in your answer.

Hints: (1) You should not use any of the results in Section 3.7 of Callen, which describes
a slightly simpler model for a rubber band. (2) The procedure for integrating partial
derivatives of the tension to get τ(T, L) is essentially the same as that for integrating
equations of state to get the fundamental equation.

2. The electromagnetic radiation inside a closed cavity of volume V obeys the fundamental
equation
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(a) Calculate the constant-volume heat capacity CV (V, T ).

(b) Calculate the adiabatic compressibility κS(S, P ).

(c) Calculate P (V, T ). Hence show that the constant-pressure heat capacity CP and
the thermal expansion coefficient α are both equal to zero.

3. A fixed quantity of water, initially at temperature Tw, has a heat capacity Cw which
can be taken to be independent of temperature.

(a) Suppose that the water is brought into contact with a thermal reservoir at tem-
perature Tr, where Tr > Tw. Assuming quasistatic heat transfer, how much has
the entropy of the entire system changed by the time the water has come to
equilibrium with the reservoir?

(b) Suppose instead that the water is brought into equilibrium first with a thermal
reservoir at Tm, then with a second reservoir at Tr, where Tr > Tm > Tw. Once
again assuming quasistatic heat transfer, what is the overall entropy change for
the entire system?

(c) For fixed C, Tw, and Tr, what value of Tm minimizes the overall entropy change
for the two-step process described in (b)?

4. The air-standard diesel cycle consists of the following four steps: (i) adiabatic com-
pression from volume VA to VB; (ii) isobaric expansion from volume VB to VC ; (iii)
adiabatic expansion from volume VC to VD; (iv) an isochoric return to the starting
point. Callen Fig. 4.11 illustrates this cycle on P–V and T–S diagrams.

Consider an implementation of this cycle, using for the auxiliary system a fixed amount
of a simple ideal gas described by the fundamental equation
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Calculate the engine efficiency for this implementation. Assume that each step in the
cycle is carried out quasistatically. Express your final answer solely in terms of the
parameter γ and the volumes VA, VB, and VC .


