
PHY 4523 Spring 2001 – Homework 1

Due at the start of class on Friday, January 26.

Answer both questions. To gain full credit you should explain your reasoning and show all
working. Please write neatly and remember to include your name on the front page of your
answers.

1. Binary probabilities. This problem generalizes the example of three spins discussed in
class. It provides practice in using Stirling’s formula, and illustrates the sharpness of
the probability distribution for unconstrained variables in large systems.

Consider a collection of N spins, each of which is equally likely to be in either of two
possible orientations, up and down (or ↑ and ↓).

(a) Find Ω(N), the total number of possible microstates for this system.

(b) Show that the number of microstates of this system in which exactly N↑ of the
spins point up (and N↓ = N −N↑ point down) is

Ω(N ; N↑) =
N !

N↑! (N −N↑)!
.

(c) Calculate the probability P (N↑) of finding the system in a microstate having N↑
up electrons.

(d) Using the simplified form of Stirling’s formula, lnn! = n ln n − n, calculate the
leading terms in ln P (N↑) for situations in which both N↑ and N↓ are much bigger
than one.

(e) Show that there is a maximum in lnP (N↑) and hence in P (N↑) at a particular
value, N↑ = Ñ↑.

(f) Using the formula ln(1 + x) = x− 1
2
x2 + . . . for |x| � 1, expand ln P (N↑) about

N↑ = Ñ↑ in powers of N↑−Ñ↑. Retain the first two nonzero terms in the expansion.

(g) Use your result from (f) to write down an expression for P (N↑) valid for N↑ ≈ Ñ↑.
Estimate the probability of finding N↑ = 1.01Ñ↑ for a system of one million spins
(N = 106). You need only give your answer to the nearest power of ten.

2. A collection of quantum harmonic oscillators. This problem asks you to examine
in more detail a model introduced in lectures. Parts (a) and (b) provide additional
practice in working with Stirling’s formula. Parts (c)–(f) illustrate the way in which
the probabilistic results of statistical mechanics reduce, in the limit of large system
size, to the “exact” results of classical thermodynamics.

(a) Consider a collection of N quantum harmonic oscillators, each having the same
frequency ω and an energy of the form ε = nh̄ω, n = 0, 1, 2, . . .. (We are
neglecting the zero-point energy 1

2
h̄ω.) Let the system have a total energy E =



Mh̄ω, where M is a positive integer. As shown in class, the multiplicity function
for this system is

Ω(E,N) =
(M + N − 1)!

M ! (N − 1)!
.

Focus on the macroscopic limit in which M > N � 1 with M/N = n̄, a finite
constant greater than one (say, 10). Use the full version of Stirling’s formula,
ln n! = (n + 1

2
) ln n− n + ln

√
2π + O(1/n), to write ln Ω(E,N) in terms of N , n̄,

and constants (not E or M).

(b) Take your result from (a) and wherever possible apply the formula ln(1 + x) =
x − 1

2
x2 + . . . for |x| � 1. For example, ln[M/(N − 1)] = ln[n̄/(1 − 1/N)] =

ln n̄− ln(1− 1/N) ≈ ln n̄ + 1/N + 1/(2N2).

In this way, expand ln Ω(E,N) as a sequence of terms of decreasing magnitude.
First order all terms by their N dependence (e.g., N ln N > N > ln N > 1 >
1/ ln N > 1/N), then order each set of terms having the same N dependence by
their n̄ dependence.

In this and all the remaining parts of this problem, you may neglect any term
which (i) vanishes when N −→ ∞ with n̄ held constant and/or (ii) is less than
1/n̄ times the largest term with a given N dependence. For example, you should
reduce N + N/n̄−N/n̄2 + 1/n̄3 + 1/ ln N to N + N/n̄ + 1/n̄3.

(c) Now consider a composite system consisting of two subsystems, labeled α = 1, 2.
Each subsystem contains N oscillators. Initially, each subsystem is closed and has
the same total energy E(α) = Mh̄ω (with M > N � 1). Use your answer to (a)
to write down an expansion for ln Ωi, where Ωi is the initial number of microstates
accessible to the composite system.

(d) Now let the two subsystems be brought into thermal contact, so that a total
energy E = 2Mh̄ω is distributed among 2N oscillators. Write down an expansion
for ln Ωf , where Ωf is the new number of accessible microstates.

(e) Calculate the value of ln(Ωf/Ωi). Your answer should be positive because the mi-
crostates accessible in the final equilibrium state include all microstates accessible
initially plus many others (all those with E(1) + E(2) = 2Mh̄ω but E(1) 6= Mh̄ω).

(f) Note that according to statistical mechanics, ln(Ωf/Ωi) ≡ (Sf − Si)/kB, where S
is the entropy. In classical thermodynamics, the entropy of a macroscopic system
is supposed to be extensive, i.e., proportional to the size of the system. Thus the
entropy of a system of 2N oscillators should be just twice that of a system of N
oscillators of the same type. This reasoning suggests that Ωf should equal Ωi, or
ln(Ωf/Ωi) = 0.

Resolve the apparent contradiction with (d) by showing that in the “thermody-
namic limit” (N →∞, M →∞, but M/N = n̄ = finite and nonzero), the initial
and final entropies per oscillator are the same, i.e., Sf/N = Si/N . This gives
precise meaning to the rather loose statement “entropy is extensive”.


