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Addition of Two Arbitrary Angular Momenta

• We are going to consider the general problem of adding two independent angular
momenta J1 and J2, e.g., the orbital and spin angular momenta of a single particle, or
the spin of two electrons. In many cases, the magnitude of each of the angular momenta
(J2

1 and J2
2 ) can be considered to be fixed, but their z components (J1,z and J2,z) can

vary. The goal is to construct composite states that are simultaneous eigenstates of

J2 = |J1 + J2|2

and
Jz = J1,z + J2,z. (1)

• Assume that we start with two sets of angular momentum eigenkets, {|jk,mk〉,mk =
−jk,−jk+1, . . . , jk−1, jk} (k = 1, 2), each set exhibiting the standard properties

J2
k |jk,mk〉 = jk(jk+1) h̄2 |jk,mk〉,

Jk,z |jk,mk〉 = mk h̄ |jk,mk〉,
Jk,± |jk,mk〉 = c±(jk,mk) h̄ |jk,mk ± 1〉.

where
c±(j,m) = +

√
(j ∓m)(j ±m+1).

Since the operators Jk obey the commutation relations [J2
j , Jk,l] = 0, [J1,l , J2,m] = 0,

and [Jk,l , Jk,m] = ih̄εlmnJk,n (for l,m, n ∈ {x, y, z} and j, k ∈ {1, 2}), the direct product
basis kets

|j1,m1; j2,m2〉 = |j1,m1〉 ⊗ |j2,m2〉
are simultaneous eigenkets of J2

1 , J1,z, J2
2 , J2,z, and Jz, but not (in general) of

J2 ≡ J2
1 + J2

2 + J1,+J2,− + J1,−J2,+ + 2J1,zJ2,z. (2)

• The commutation relations above imply that the eigenstates of J2 and Jz are also
eigenstates of J2

1 and J2
2 , but not necessarily eigenstates of J1,z or J2,z. Accordingly,

we denote these states by |j,m, j1, j2〉, or often just |j,m〉.
• In principle, one can find the states |j,m〉 by diagonalizing the matrix representation

of J2 in the direct product basis |j1,m1; j2,m2〉. However, the dimension of that basis
is (2j1 +1)(2j2 +1), so this brute-force approach is cumbersome for large j1 and/or j2.

• There is a more efficient procedure for systematically generating the states |j,m〉 by
making use of the operators J± = Jx ± iJy:

1. We start with the state

|j1+j2, j1+j2〉 = |j1,m1; j2,m2〉 ≡ |j1,m1〉 ⊗ |j2,m2〉, (3)

which has the largest possible value of m that can be constructed from the two
sets of angular momentum states. It is simple to verify using Eqs. (1) and (2)
that this is an eigenstate of both J2 and Jz.



2. Since Eq. (3) describes an angular momentum eigenstate, we can generate another
such eigenstate by acting with J− on both sides of the equation:

c−(j1+j2, j1+j2)|j1+j2, j1+j2−1〉 =

c−(j1, j1)|j1, j1−1; j2, j2〉+ c−(j2, j2)|j1, j1; j2, j2−1〉. (4)

Dividing through by c−(j1+j2, j1+j2), we can extract |j1+j2, j1+j2−1〉.
3. By applying J− a total of 2(j1+j2) times, we can extract a complete multiplet of

states of total angular momentum j = j1+j2.

4. Now we consider the subspace of direct product states having Jz = (j1+j2−1)h̄.
There are exactly two such states: |j1, j1−1; j2, j2〉 and |j1, j1; j2, j2−1〉. Since we
singled out one linear combination of these states in Eq. (4), we can construct a
state

|j1 + j2−1, j1 + j2−1〉 = A [c−(j2, j2))|j1, j1−1; j2, j2〉 − c−(j1, j1)|j1, j1; j2, j2−1〉]
(5)

that (i) is orthogonal to |j1+j2, j1+j2−1〉 defined in Eq. (4), (ii) satisfies

Jz|j1+j2−1, j1+j2−1〉 = (j1+j2−1)h̄|j1+j2−1, j1+j2−1〉
and

J+|j1+j2−1, j1+j2−1〉 = 0,

and (iii) is therefore an eigenstate of J2 and Jz with total angular momentum
j = j1 + j2 − 1. The prefactor A entering |j1+j2−1, j1+j2−1〉 is determined by
the requirement of normalization and the sign convention that the coefficient of
|j1, j1; j2, j2−1〉 is real and positive.

5. We now apply J− repeatedly to Eq. (5) to generate a complete multiplet of angular
momentum j = j1+j2−1.

6. In general, there will be three direct product states having Jz = (j1 +j2 − 2)h̄,
from which two linear combinations have already been formed: |j1+j2, j1+j2− 2〉
and |j1+j2−1, j1+j2 − 2〉. This leaves a third linear combination, which must be
the top state of yet another multiplet, this one having total angular momentum
j = j1+j2 − 2.

7. Each time we reduce m by one, we increase by one the number of direct product
states having Jz = mh̄. By forming a linear combination of these states that is
orthogonal to all those of total angular momentum j > m already constructed, we
identify the top state of a multiplet of total angular momentum j = m. This state
is uniquely determined by the requirements of normalization, and the convention
that the coefficient of |j1, j1; j2, j−j1〉 is real and positive.

8. This pattern continues until we have formed a multiplet of j = |j1 − j2|.
The subspace Jz = |j1 − j2|h̄ contains the product state |j1, j1〉 ⊗ |j2,−j2〉 and/or
|j1,−j1〉⊗|j2, j2〉 (depending on whether j1 is greater than, smaller than, or equal
to j2). Since Jk,− |jk,−jk〉 = 0, we do not generate an additional direct product
state having Jz = mh̄ for any m < |j1 − j2|, and so we do not generate any
multiplet of total angular momentum j < |j1−j2|.



9. The conclusion from this procedure is that states of angular momentum j1 and
j2 can be combined to form eigenstates of total angular momentum j satisfying
|j1−j2| ≤ j ≤ j1+j2, with exactly one multiplet possible for each possible j value,
i.e.,

j1 ⊗ j2 = j1+j2 ⊕ j1+j2−1 ⊕ . . . ⊕ |j1−j2|+1 ⊕ |j1−j2|.

• The total angular momentum eigenkets can be conveniently written in the form

|j,m, j1, j2〉 =
+j1∑

m1=−j1

+j2∑
m2=−j2

|j1,m1; j2,m2〉〈j1,m1; j2,m2|j,m, j1, j2〉, (6)

where 〈j1,m1; j2,m2|j,m, j1, j2〉 ≡ 〈j1,m1; j2,m2|j,m〉 is a Clebsch-Gordan coeffi-
cient.

• The Clebsch-Gordan coefficients have the following properties:

1. 〈j1,m1; j2,m2|j,m〉 6= 0 iff j ∈ {j1+j2, j1+j2−1, . . . , |j1−j2|+1, |j1 − j2|} and
m = m1 + m2.

2. Under the Condon-Shortley convention, all Clebsch-Gordan coefficients are real,
and 〈j1, j1; j2, j−j1|j, j〉 is positive.

3. By applying J± to Eq. (6), one can obtain the recursion relations

c±(j,m)〈j1,m1; j2,m2|j,m± 1〉 = c∓(j1,m1)〈j1,m1 ∓ 1; j2,m2|j,m〉
+ c∓(j2,m2)〈j1,m1; j2,m2 ∓ 1|j,m〉.

4. Taking the norm of each side of Eq. (6) gives the normalization

∑
m1,m2

|〈j1,m1; j2,m2|j,m〉|2 = 1.

5. The Clebsch-Gordan coefficients are orthogonal, in the sense that

∑
m1,m2

〈j1,m1; j2,m2|j,m〉〈j1,m1; j2,m2|j′,m′〉 = δj,j′δm,m′

and ∑
j,m

〈j1,m1; j2,m2|j,m〉〈j1,m
′
1; j2,m

′
2|j,m〉 = δm1,m′

1
δm2,m′

2
.

6. Finally, it can be shown that

〈j1,m1; j2,m2|j,m〉 = (−1)j1+j2−j〈j1,−m1; j2,−m2|j,−m〉
= 〈j2,−m2; j1,−m1|j,−m〉.

Properties (1)–(4) are sufficient to fully determine the Clebsch-Gordan coefficients.
However, in practice, one usually looks up the numerical values of these coefficients
from standard tables or software packages.


