Addition of Two Arbitrary Angular Momenta

- We are going to consider the general problem of adding two independent angular momenta \mathbf{J}_{1} and \mathbf{J}_{2}, e.g., the orbital and spin angular momenta of a single particle, or the spin of two electrons. In many cases, the magnitude of each of the angular momenta $\left(J_{1}^{2}\right.$ and $\left.J_{2}^{2}\right)$ can be considered to be fixed, but their z components ($J_{1, z}$ and $J_{2, z}$) can vary. The goal is to construct composite states that are simultaneous eigenstates of

$$
J^{2}=\left|\mathbf{J}_{1}+\mathbf{J}_{2}\right|^{2}
$$

and

$$
\begin{equation*}
J_{z}=J_{1, z}+J_{2, z} \tag{1}
\end{equation*}
$$

- Assume that we start with two sets of angular momentum eigenkets, $\left\{\left|j_{k}, m_{k}\right\rangle, m_{k}=\right.$ $\left.-j_{k},-j_{k}+1, \ldots, j_{k}-1, j_{k}\right\}(k=1,2)$, each set exhibiting the standard properties

$$
\begin{aligned}
J_{k}^{2}\left|j_{k}, m_{k}\right\rangle & =j_{k}\left(j_{k}+1\right) \hbar^{2}\left|j_{k}, m_{k}\right\rangle \\
J_{k, z}\left|j_{k}, m_{k}\right\rangle & =m_{k} \hbar\left|j_{k}, m_{k}\right\rangle \\
J_{k, \pm}\left|j_{k}, m_{k}\right\rangle & =c_{ \pm}\left(j_{k}, m_{k}\right) \hbar\left|j_{k}, m_{k} \pm 1\right\rangle
\end{aligned}
$$

where

$$
c_{ \pm}(j, m)=\sqrt[+]{(j \mp m)(j \pm m+1)}
$$

Since the operators \mathbf{J}_{k} obey the commutation relations $\left[J_{j}^{2}, J_{k, l}\right]=0,\left[J_{1, l}, J_{2, m}\right]=0$, and $\left[J_{k, l}, J_{k, m}\right]=i \hbar \epsilon_{l m n} J_{k, n}$ (for $l, m, n \in\{x, y, z\}$ and $j, k \in\{1,2\}$), the direct product basis kets

$$
\left|j_{1}, m_{1} ; j_{2}, m_{2}\right\rangle=\left|j_{1}, m_{1}\right\rangle \otimes\left|j_{2}, m_{2}\right\rangle
$$

are simultaneous eigenkets of $J_{1}^{2}, J_{1, z}, J_{2}^{2}, J_{2, z}$, and J_{z}, but not (in general) of

$$
\begin{equation*}
J^{2} \equiv J_{1}^{2}+J_{2}^{2}+J_{1,+} J_{2,-}+J_{1,-} J_{2,+}+2 J_{1, z} J_{2, z} \tag{2}
\end{equation*}
$$

- The commutation relations above imply that the eigenstates of J^{2} and J_{z} are also eigenstates of J_{1}^{2} and J_{2}^{2}, but not necessarily eigenstates of $J_{1, z}$ or $J_{2, z}$. Accordingly, we denote these states by $\left|j, m, j_{1}, j_{2}\right\rangle$, or often just $|j, m\rangle$.
- In principle, one can find the states $|j, m\rangle$ by diagonalizing the matrix representation of J^{2} in the direct product basis $\left|j_{1}, m_{1} ; j_{2}, m_{2}\right\rangle$. However, the dimension of that basis is $\left(2 j_{1}+1\right)\left(2 j_{2}+1\right)$, so this brute-force approach is cumbersome for large j_{1} and/or j_{2}.
- There is a more efficient procedure for systematically generating the states $|j, m\rangle$ by making use of the operators $J_{ \pm}=J_{x} \pm i J_{y}$:

1. We start with the state

$$
\begin{equation*}
\left|j_{1}+j_{2}, j_{1}+j_{2}\right\rangle=\left|j_{1}, m_{1} ; j_{2}, m_{2}\right\rangle \equiv\left|j_{1}, m_{1}\right\rangle \otimes\left|j_{2}, m_{2}\right\rangle \tag{3}
\end{equation*}
$$

which has the largest possible value of m that can be constructed from the two sets of angular momentum states. It is simple to verify using Eqs. (1) and (2) that this is an eigenstate of both J^{2} and J_{z}.
2. Since Eq. (3) describes an angular momentum eigenstate, we can generate another such eigenstate by acting with J_{-}on both sides of the equation:

$$
\begin{align*}
& c_{-}\left(j_{1}+j_{2}, j_{1}+j_{2}\right)\left|j_{1}+j_{2}, j_{1}+j_{2}-1\right\rangle= \\
& \quad c_{-}\left(j_{1}, j_{1}\right)\left|j_{1}, j_{1}-1 ; j_{2}, j_{2}\right\rangle+c_{-}\left(j_{2}, j_{2}\right)\left|j_{1}, j_{1} ; j_{2}, j_{2}-1\right\rangle . \tag{4}
\end{align*}
$$

Dividing through by $c_{-}\left(j_{1}+j_{2}, j_{1}+j_{2}\right)$, we can extract $\left|j_{1}+j_{2}, j_{1}+j_{2}-1\right\rangle$.
3. By applying J_{-}a total of $2\left(j_{1}+j_{2}\right)$ times, we can extract a complete multiplet of states of total angular momentum $j=j_{1}+j_{2}$.
4. Now we consider the subspace of direct product states having $J_{z}=\left(j_{1}+j_{2}-1\right) \hbar$. There are exactly two such states: $\left|j_{1}, j_{1}-1 ; j_{2}, j_{2}\right\rangle$ and $\left|j_{1}, j_{1} ; j_{2}, j_{2}-1\right\rangle$. Since we singled out one linear combination of these states in Eq. (4), we can construct a state

$$
\begin{equation*}
\left.\left|j_{1}+j_{2}-1, j_{1}+j_{2}-1\right\rangle=A\left[c_{-}\left(j_{2}, j_{2}\right)\right)\left|j_{1}, j_{1}-1 ; j_{2}, j_{2}\right\rangle-c_{-}\left(j_{1}, j_{1}\right)\left|j_{1}, j_{1} ; j_{2}, j_{2}-1\right\rangle\right] \tag{5}
\end{equation*}
$$

that (i) is orthogonal to $\left|j_{1}+j_{2}, j_{1}+j_{2}-1\right\rangle$ defined in Eq. (4), (ii) satisfies

$$
J_{z}\left|j_{1}+j_{2}-1, j_{1}+j_{2}-1\right\rangle=\left(j_{1}+j_{2}-1\right) \hbar\left|j_{1}+j_{2}-1, j_{1}+j_{2}-1\right\rangle
$$

and

$$
J_{+}\left|j_{1}+j_{2}-1, j_{1}+j_{2}-1\right\rangle=0
$$

and (iii) is therefore an eigenstate of J^{2} and J_{z} with total angular momentum $j=j_{1}+j_{2}-1$. The prefactor A entering $\left|j_{1}+j_{2}-1, j_{1}+j_{2}-1\right\rangle$ is determined by the requirement of normalization and the sign convention that the coefficient of $\left|j_{1}, j_{1} ; j_{2}, j_{2}-1\right\rangle$ is real and positive.
5. We now apply J_{-}repeatedly to Eq. (5) to generate a complete multiplet of angular momentum $j=j_{1}+j_{2}-1$.
6. In general, there will be three direct product states having $J_{z}=\left(j_{1}+j_{2}-2\right) \hbar$, from which two linear combinations have already been formed: $\left|j_{1}+j_{2}, j_{1}+j_{2}-2\right\rangle$ and $\left|j_{1}+j_{2}-1, j_{1}+j_{2}-2\right\rangle$. This leaves a third linear combination, which must be the top state of yet another multiplet, this one having total angular momentum $j=j_{1}+j_{2}-2$.
7. Each time we reduce m by one, we increase by one the number of direct product states having $J_{z}=m \hbar$. By forming a linear combination of these states that is orthogonal to all those of total angular momentum $j>m$ already constructed, we identify the top state of a multiplet of total angular momentum $j=m$. This state is uniquely determined by the requirements of normalization, and the convention that the coefficient of $\left|j_{1}, j_{1} ; j_{2}, j-j_{1}\right\rangle$ is real and positive.
8. This pattern continues until we have formed a multiplet of $j=\left|j_{1}-j_{2}\right|$.

The subspace $J_{z}=\left|j_{1}-j_{2}\right| \hbar$ contains the product state $\left|j_{1}, j_{1}\right\rangle \otimes\left|j_{2},-j_{2}\right\rangle$ and/or $\left|j_{1},-j_{1}\right\rangle \otimes\left|j_{2}, j_{2}\right\rangle$ (depending on whether j_{1} is greater than, smaller than, or equal to j_{2}). Since $J_{k,-}\left|j_{k},-j_{k}\right\rangle=0$, we do not generate an additional direct product state having $J_{z}=m \hbar$ for any $m<\left|j_{1}-j_{2}\right|$, and so we do not generate any multiplet of total angular momentum $j<\left|j_{1}-j_{2}\right|$.
9. The conclusion from this procedure is that states of angular momentum j_{1} and j_{2} can be combined to form eigenstates of total angular momentum j satisfying $\left|j_{1}-j_{2}\right| \leq j \leq j_{1}+j_{2}$, with exactly one multiplet possible for each possible j value, i.e.,

$$
j_{1} \otimes j_{2}=j_{1}+j_{2} \oplus j_{1}+j_{2}-1 \oplus \ldots \oplus\left|j_{1}-j_{2}\right|+1 \oplus\left|j_{1}-j_{2}\right| .
$$

- The total angular momentum eigenkets can be conveniently written in the form

$$
\begin{equation*}
\left|j, m, j_{1}, j_{2}\right\rangle=\sum_{m_{1}=-j_{1}}^{+j_{1}} \sum_{m_{2}=-j_{2}}^{+j_{2}}\left|j_{1}, m_{1} ; j_{2}, m_{2}\right\rangle\left\langle j_{1}, m_{1} ; j_{2}, m_{2} \mid j, m, j_{1}, j_{2}\right\rangle \tag{6}
\end{equation*}
$$

where $\left\langle j_{1}, m_{1} ; j_{2}, m_{2} \mid j, m, j_{1}, j_{2}\right\rangle \equiv\left\langle j_{1}, m_{1} ; j_{2}, m_{2} \mid j, m\right\rangle$ is a Clebsch-Gordan coefficient.

- The Clebsch-Gordan coefficients have the following properties:

1. $\left\langle j_{1}, m_{1} ; j_{2}, m_{2} \mid j, m\right\rangle \neq 0$ iff $j \in\left\{j_{1}+j_{2}, j_{1}+j_{2}-1, \ldots,\left|j_{1}-j_{2}\right|+1,\left|j_{1}-j_{2}\right|\right\}$ and $m=m_{1}+m_{2}$.
2. Under the Condon-Shortley convention, all Clebsch-Gordan coefficients are real, and $\left\langle j_{1}, j_{1} ; j_{2}, j-j_{1} \mid j, j\right\rangle$ is positive.
3. By applying $J_{ \pm}$to Eq. (6), one can obtain the recursion relations

$$
\begin{aligned}
c_{ \pm}(j, m)\left\langle j_{1}, m_{1} ; j_{2}, m_{2} \mid j, m \pm 1\right\rangle & =c_{\mp}\left(j_{1}, m_{1}\right)\left\langle j_{1}, m_{1} \mp 1 ; j_{2}, m_{2} \mid j, m\right\rangle \\
& +c_{\mp}\left(j_{2}, m_{2}\right)\left\langle j_{1}, m_{1} ; j_{2}, m_{2} \mp 1 \mid j, m\right\rangle .
\end{aligned}
$$

4. Taking the norm of each side of Eq. (6) gives the normalization

$$
\sum_{m_{1}, m_{2}}\left|\left\langle j_{1}, m_{1} ; j_{2}, m_{2} \mid j, m\right\rangle\right|^{2}=1
$$

5. The Clebsch-Gordan coefficients are orthogonal, in the sense that

$$
\sum_{m_{1}, m_{2}}\left\langle j_{1}, m_{1} ; j_{2}, m_{2} \mid j, m\right\rangle\left\langle j_{1}, m_{1} ; j_{2}, m_{2} \mid j^{\prime}, m^{\prime}\right\rangle=\delta_{j, j^{\prime}} \delta_{m, m^{\prime}}
$$

and

$$
\sum_{j, m}\left\langle j_{1}, m_{1} ; j_{2}, m_{2} \mid j, m\right\rangle\left\langle j_{1}, m_{1}^{\prime} ; j_{2}, m_{2}^{\prime} \mid j, m\right\rangle=\delta_{m_{1}, m_{1}^{\prime}} \delta_{m_{2}, m_{2}^{\prime}} .
$$

6. Finally, it can be shown that

$$
\begin{aligned}
\left\langle j_{1}, m_{1} ; j_{2}, m_{2} \mid j, m\right\rangle & =(-1)^{j_{1}+j_{2}-j}\left\langle j_{1},-m_{1} ; j_{2},-m_{2} \mid j,-m\right\rangle \\
& =\left\langle j_{2},-m_{2} ; j_{1},-m_{1} \mid j,-m\right\rangle .
\end{aligned}
$$

Properties (1)-(4) are sufficient to fully determine the Clebsch-Gordan coefficients. However, in practice, one usually looks up the numerical values of these coefficients from standard tables or software packages.

