
PHY 6645 Fall 2003 – Homework 4

Due by 5 p.m. on Friday, October 3. No credit will be available for homework submitted
after 5 p.m. on Monday, October 6.

Answer questions 1–3. Please write neatly and include your name on the front page of your
answers. You must also clearly identify all your collaborators on this assignment. To gain
maximum credit you should explain your reasoning and show all working.

Introduction: For any piecewise-constant potential in 1D, you should be able to

• identify the range of energies E over which eigenstates of the time-independent Hamil-
tonian will be (i) continuously distributed in energy; (ii) forbidden on general principle;
and (iii) not ruled out, but if present distributed with discrete eigenvalues.

• determine the degeneracy with which any energy E would appear, should it turn out
to be an allowed eigenvalue.

• set up the form of a general solution ψE(x) of the Schrödinger equation within each
region of constant potential.

• apply the appropriate boundary conditions at each point where the potential changes.

Where relevant, you should be able (in principle at least—in practice it may be algebraically
very messy) to

• formulate the equation satisfied by bound-state solutions. (It is not always straight-
forward to solve this equation.)

• construct (i) the wave function ψE,R(x) describing a right-moving wave coming from
x = −∞, plus all scattered waves; and/or (ii) the wave function ψE,L(x) corresponding
to a left-moving wave coming from x = +∞, plus all scattered waves.

• calculate the probability current density j at any point x, and calculate reflection and
transmission coefficients (R and T ) for waves incoming from x = −∞ or x = +∞.

• be able to figure out (qualitatively at least) the behavior when a wave packet approaches
from either x = −∞ or x = +∞.

Homework questions: Explicit calculations for three standard potentials.

1. Potential step: V (x) = V0θ(x) with V0 > 0 (Shankar Sect. 5.4, Merzbacher Sect. 6.1)

(a) Specify the range of E over which the state ψE,R(x) exists. Construct this state
explicitly for all E in this range, and calculate j, R, and T . Note: Throughout
this homework set, you should specify the form of the wave function within every
region of constant potential (not just within one such region).

(b) Repeat part (a) for the state ψE,L(x).

(c) Prove that T (E) must be independent of the direction of incidence for any one-
dimensional system described by a real Hamiltonian. [You may assume that the
system is described by a transfer matrix P (E).] Verify by explicit calculation that
this property is obeyed for the step potential.



(d) For situations where both ψE,L(x) and ψE,R(x) exist, are these two states orthog-
onal? If not, construct an orthogonalized pair of states to replace them.

2. Rectangular barrier: V (x) = V0θ(a− |x|) with V0, a > 0 (Merzbacher Sect. 6.2)

(a) Specify the range of E over which the state ψE,R(x) exists. Construct this state
explicitly for all E in this range, and calculate j, R, and T .

(b) Construct the transfer matrix P (E) for this potential by suitably combining the
transfer matrices for two step potentials. Verify that your result agrees with that
obtained in part (a).

(c) Identify the energy of any resonances, i.e., peaks in T (E).

(d) Construct the energy eigenstates for two special cases: (i) the infinite potential
barrier, V0 = ∞; (ii) the delta-function barrier, V (x) = 2V0aδ(x).

3. Rectangular well: V (x) = −V0θ(a− |x|) with V0, a > 0 (Shankar Sect. 5.2, Merzbacher
Sect. 6.4)

(a) Specify the range of E over which the state ψE,R(x) exists. Construct this state
explicitly for all E in this range, and calculate j, R, and T .

(b) Construct the transfer matrix P (E) for this potential by suitably combining the
transfer matrices for two step potentials. Verify that your result agrees with that
obtained in part (a).

(c) Identify the energy of any resonances in the range where ψE,R(x) exists.

(d) Derive the equation that determines the bound-state energies.

(e) Find all energy eigenvalues and eigenstates for the special case of a delta-function
well, V (x) = −2V0aδ(x) (c.f. Shankar Exercise 5.2.3).

(f) Do Shankar Ex. 5.2.2, proving that every attractive potential in one dimension
has at least one bound state. (This need not be the case in higher dimensions.)

Additional exercises: For practice only—not to be turned in for grading.

• Check that you understand what happens when a Gaussian wave packet scatters from
the step potential. Shankar has a good discussion of this.

• Work through Shankar Exercise 5.2.6, dealing with the graphical procedure for finding
the bound-state energies of the general rectangular well.

• For the rectangular barrier and the rectangular well, understand the qualitative effects
of perturbing the potential in various ways, e.g., making V (x) = V1 for x > a, where
0 < V1 � V0, or making V (x) vary linearly from V0 at x = −a to V1 at x = a.

• Double Barriers: V (x) = V0θ(|x|−a)θ(b−|x|) with V0 > 0 and b > a > 0.

1. Construct the transfer matrix element for this potential by combining the transfer
matrices for two rectangular barriers.

2. Plot the transmission coefficient T vs E/V0 for a =
√

18h̄2/mV0 and (i) b = 1.2a;
(ii) b = 3a; (iii) b = 10a. It will suffice to calculate T (E) numerically.

This potential is somewhat more complicated than those above. It is included as a
challenge for anyone who is already familiar with the more standard cases.


