K. Ingersent

Infinite-Dimensional Linear Vector Spaces

The formal treatment of infinite-dimensional vector spaces is much more complicated than that of finite-dimensional vector spaces; in fact, the subject forms an entire branch of mathematics: *functional analysis*. These notes provide a non-rigorous overview, focusing on issues that will be important for quantum mechanics. One such is the requirement that the inner product $\langle W|V \rangle$ be finite, so that its modulus-squared can be interpreted as a probability (or probability density). Identification of the maximal set of vectors satisfying this requirement (i.e., ensuring the completeness of the vector space) can be a nontrivial matter.

Throughout what follows, "IPS" means "inner product space" (i.e., a linear vector space over the field of complex scalars that has an inner product).

The Dual Vector Space

- For any IPS \mathbb{V} , the *dual vector space* \mathbb{V}^* is defined to be the set of bras $\langle W |$ that have a finite inner product $\langle W | V \rangle$ with every ket $|V \rangle$ in \mathbb{V} .
- For finite-dimensional IPS's, this definition implies that there is a 1:1 correspondence between the kets in \mathbb{V} and the bras in \mathbb{V}^* . The correspondence is *antilinear*: $a|V\rangle + b|W\rangle \longleftrightarrow a^*\langle V| + b^*\langle W|.$
- For infinite-dimensional IPS's, we shall see that \mathbb{V}^* may be larger or smaller than \mathbb{V} .

IPS's With a Countably Infinite Basis

- Consider a countably infinite set of basis kets, denoted $\{|j\rangle, j = 1, 2, ...\}$, with a bra $\langle j|$ corresponding to each ket $|j\rangle$. Assume that the basis is orthonormal, i.e., $\langle j|k\rangle = \delta_{j,k}$. A generic ket can be written (uniquely) as $|V\rangle = \sum_{j=1}^{\infty} v_j |j\rangle$, where each v_j is a finite, complex number. There is a corresponding bra $\langle V| = \sum_{j=1}^{\infty} v_j^* \langle j|$. The inner product $\langle W|V\rangle = \sum_{j=1}^{\infty} w_j^* v_j$ can be represented as the contraction of an infinite row vector (the bra) with an infinite column vector (the ket).
- Many different infinite-dimensional IPS's can be composed from subsets of the set of all kets $|V\rangle$ defined above. We will consider three cases:
 - 1. An *incomplete IPS* \mathbb{V}_0 consisting of all finite linear combinations of the basis kets, i.e., all kets of the form $|V\rangle = \sum_{j=1}^n v_j |j\rangle$ where *n* is some positive integer. Each such ket can be represented as an infinite column vector with only a finite number of nonzero components. The dual vector space \mathbb{V}_0^* consists of all bras having finite components in the basis $\{\langle j | \}$, irrespective of whether the number of nonzero components is finite or infinite. Therefore, \mathbb{V}_0^* is much larger than \mathbb{V}_0 .

 \mathbb{V}_0 is *incomplete* in the sense that there exist sequences of kets $|V_n\rangle$, n = 1, 2, ..., such that (i) $|V_n\rangle \in \mathbb{V}_0$ for all finite n; and (ii) the limit ket $|V_{\infty}\rangle = \lim_{n \to \infty} |V_n\rangle$ is well-defined and has a finite norm, but $|V_{\infty}\rangle \notin \mathbb{V}_0$. For instance, consider the sequence $|V_n\rangle = \sum_{j=1}^n j^{-1} |j\rangle$, for which $\langle V_{\infty} | V_{\infty} \rangle = \pi^2/6 < \infty$, but $|V_{\infty}\rangle$ lies outside \mathbb{V}_0 because it has an infinite number of nonzero components.

Example relevant to QM: The IPS C[a, b] of all functions f(x) that are continuous and square-integrable on a finite interval [a, b], with the inner product defined as $\langle g|f \rangle = \int_a^b dx \, g^*(x) f(x)$. To see that this IPS is incomplete, consider the sequence of functions $f_n(x) = \arctan nx, n = 1, 2, \ldots$, defined on any finite interval that includes x = 0. Although $f_n(x) \in C[a, b]$ for all finite n, $\lim_{n\to\infty} f_n(x) =$ $(\pi/2) \operatorname{sgn} x$ is discontinuous at x = 0, and therefore does not belong to C[a, b].

2. A Hilbert space \mathbb{V}_2 consisting of all kets $|V\rangle$ having a finite norm $\sqrt{\sum_{j=1}^{\infty} |v_j|^2}$, irrespective of whether the number of nonzero components is finite or infinite. Formally, \mathbb{V}_2 is the *completion* of \mathbb{V}_0 with respect to the distance $||V - W||: \mathbb{V}_2$ contains all the vectors in \mathbb{V}_0 , plus the limit of all convergent sequences $|V_n\rangle \in \mathbb{V}_0$, $n = 1, 2 \ldots$, with convergence being defined by $\lim_{n\to\infty} ||V_{n+1} - V_n|| = 0$. The correspondence between \mathbb{V}_2 and \mathbb{V}_2^* is 1:1.

Example relevant to QM: The IPS $L^2[a, b]$ of all complex-valued functions of one real argument that are square-integrable on the finite interval [a, b]: $L^2[a, b] =$ $\{f(x) \mid \int_a^b dx |f(x)|^2 < \infty\}$. Fourier's theorem guarantees that this space has a countably infinite orthonormal basis $\{f_j(x)\}$ that is complete in the sense that any square-integrable f(x) can be approximated to arbitrary accuracy via a Fourier sum: $\lim_{n\to\infty} ||f - \sum_{j=1}^n v_j f_j|| = 0$ for all $f \in L^2[a, b]$.

3. A restricted IPS \mathbb{V}_R consisting of all kets $|V\rangle$ from \mathbb{V}_2 that satisfy some restriction stronger than having a finite norm. Since \mathbb{V}_R is a subset of \mathbb{V}_2 , every bra in \mathbb{V}_2^* has a finite inner product with every ket in \mathbb{V}_R . In general, however, \mathbb{V}_R^* is larger than \mathbb{V}_2^* , containing some bras from \mathbb{V}^* that have a finite inner product with every ket in \mathbb{V}_R but an infinite inner product with at least one ket from \mathbb{V}_2 .

Example: The set of all kets $|V\rangle$ from \mathbb{V}_2 that satisfy $\sum_{j=1}^{\infty} j^m |v_j|^2 < \infty$ for all positive integers m. (We'll see another example of a restricted IPS in the last section.)

Comparing these examples, we see that $\mathbb{V}_0 \subset \mathbb{V}_R \subset \mathbb{V}_2$ and $\mathbb{V}_2^* \subset \mathbb{V}_R^* \subset \mathbb{V}_0^*$, with only $\mathbb{V}_2 \longleftrightarrow \mathbb{V}_2^*$ being 1:1.

More on Hilbert Spaces

- A Hilbert space is any IPS that is complete with respect to the distance defined by the inner product. All finite-dimensional IPS's are complete, and hence they are Hilbert spaces, but this is not the case for all infinite-dimensional IPS's.
- In quantum mechanics, we deal only with *separable* Hilbert spaces: those that have a countable (finite or infinite) basis. The Hilbert space $L^2[a, b]$ defined above is separable.
- Another separable Hilbert space is the space $L^2 \equiv L^2[-\infty, \infty]$. It is not obvious that L^2 has a countably infinite basis because the natural generalization of the Fourier series to an infinite interval—the Fourier transform—involves a continuum of non-square-integrable basis functions of the form $\exp(ikx)$, $-\infty \leq k \leq \infty$. However, it turns out to be possible to reproduce any square-integrable f(x) to arbitrary accuracy using a countable basis of orthonormal, square-integrable wave packets.

Coordinate and Plane-Wave Bases for $L^2[a, b]$ and L^2

- When working with the space $L^2[a, b]$ (on either a finite interval or the entire real line), it is useful to formally define the set $\{|x'\rangle, a \leq x' \leq b\}$, satisfying the orthonormality condition $\langle x'|x''\rangle = \delta(x' - x'')$. Here, $|x'\rangle$ represents a function that differs from zero only at x = x', and $\langle x'|$ projects out the x = x' component of an arbitrary ket $|f\rangle$, i.e., $\langle x'|f\rangle = f(x')$. The kets $|x'\rangle$ form a complete basis, in the sense that any ket in $L^2[a, b]$ can be written $|f\rangle = \int_a^b dx' f(x') |x'\rangle$. (Actually, the uncountable set $\{|x'\rangle\}$ forms an overcomplete basis, since $L^2[a, b]$ can be spanned using a countable basis.) The completeness relation for this basis is $\int_a^b dx' |x'\rangle \langle x'| = I$.
- Another useful basis for L^2 is the set $\{|k\rangle, -\infty \leq k \leq \infty\}$, satisfying the orthonormality condition $\langle k'|k''\rangle = \delta(k'-k'')$. Here $\langle x|k\rangle = \exp(ikx)/\sqrt{2\pi}$ is an infinite plane wave having wave vector k, and $\langle k|$ projects out the Fourier component of an arbitrary ket $|f\rangle$ at wave vector k, i.e., $\langle k|f\rangle = f(k) = \int_{-\infty}^{\infty} dx f(x) \exp(-ikx)/\sqrt{2\pi}$. The full ket can be written $|f\rangle = \int_{-\infty}^{\infty} dk f(k)|k\rangle$. (NB: For $L^2[a, b]$, one instead uses a countably infinite basis of unit-normalizable functions that are periodic on [a, b].)
- The ket $|k\rangle$ defined above is an eigenket of the operator K = -i d/dx, which has the fundamental property that $K|f\rangle = |-i df/dx\rangle$ [hence, $\langle x'|K|f\rangle = -i df(x)/dx|_{x=x'}$]. The adjoint of this operator can be defined through its matrix elements:

$$\langle f|K^{\dagger}|g\rangle = \langle g|K|f\rangle^{*}$$

$$\Rightarrow \int_{a}^{b} dx \, f^{*}(x)K^{\dagger}g(x) = \left(-i\int_{a}^{b} dx \, g^{*}(x)df(x)/dx\right)^{*}$$

$$= \langle f|K|g\rangle + \left[if^{*}(x)g(x)\right]_{a}^{b} \quad \text{(by parts).}$$

Therefore, the operator K is Hermitian (i.e., self-adjoint) only if the last term vanishes. This condition is satisfied if we consider only functions that vanish at x = a and x = b, or if we restrict ourselves to functions that are periodic on the interval $a \leq x \leq b$. Less obviously (but see Shankar p. 66), the kets $|k\rangle$ can also be considered to meet the condition on the infinite line $[-\infty, \infty]$.

- Notice that $\langle x|x \rangle = \delta(0)$ "=" ∞ , so $|x\rangle$ does not belong to $L^2[a, b]$ or L^2 . (Strictly, $|x\rangle$ does not even represent a function, but rather a *distribution*.) Similarly, $\langle k|k \rangle = \delta(0)$ "=" ∞ , so $|k\rangle$ does not belong to L^2 . There are three ways to deal with this:
 - 1. Avoid using $\{|x\rangle\}$ and $\{|k\rangle\}$ at all. This solution is preferred by mathematical purists, but it is inconvenient for quantum mechanics because these kets turn out to be the eigenkets of the position and momentum operators, respectively.
 - 2. Describe physical states by kets $|\psi\rangle$ from a restricted IPS L_R of square-integrable functions that die off exponentially as $|x| \to \infty$, and eigenfunctions of operators by bras $\langle \omega |$ from the dual space L_R^* , which contains both $\{\langle x |\}$ and $\{\langle k |\}$. Calculate inner products $\langle \omega | \psi \rangle$, but never use $\{ | \omega \}$. This solution is promoted by Ballentine.
 - 3. Work with a *physical Hilbert space* consisting of the Hilbert space of squarenormalizable functions, augmented by all delta-function normalized functions. This is the practical solution adopted by the majority of physicists (without consciously thinking about it).