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Infinite-Dimensional Linear Vector Spaces

The formal treatment of infinite-dimensional vector spaces is much more complicated than
that of finite-dimensional vector spaces; in fact, the subject forms an entire branch of mathe-
matics: functional analysis. These notes provide a non-rigorous overview, focusing on issues
that will be important for quantum mechanics. One such is the requirement that the inner
product 〈W |V 〉 be finite, so that its modulus-squared can be interpreted as a probability (or
probability density). Identification of the maximal set of vectors satisfying this requirement
(i.e., ensuring the completeness of the vector space) can be a nontrivial matter.

Throughout what follows, “IPS” means “inner product space” (i.e., a linear vector space
over the field of complex scalars that has an inner product).

The Dual Vector Space

• For any IPS V, the dual vector space V
∗ is defined to be the set of bras 〈W | that have

a finite inner product 〈W |V 〉 with every ket |V 〉 in V.

• For finite-dimensional IPS’s, this definition implies that there is a 1:1 correspon-
dence between the kets in V and the bras in V

∗. The correspondence is antilinear :
a|V 〉+ b|W 〉 ←→ a∗〈V |+ b∗〈W |.

• For infinite-dimensional IPS’s, we shall see that V
∗ may be larger or smaller than V.

IPS’s With a Countably Infinite Basis

• Consider a countably infinite set of basis kets, denoted {|j〉, j = 1, 2, . . .}, with a bra 〈j|
corresponding to each ket |j〉. Assume that the basis is orthonormal, i.e., 〈j|k〉 = δj,k.
A generic ket can be written (uniquely) as |V 〉 =

∑∞
j=1 vj|j〉, where each vj is a finite,

complex number. There is a corresponding bra 〈V | = ∑∞
j=1 v

∗
j 〈j|. The inner product

〈W |V 〉 =
∑∞

j=1w
∗
jvj can be represented as the contraction of an infinite row vector

(the bra) with an infinite column vector (the ket).

• Many different infinite-dimensional IPS’s can be composed from subsets of the set of
all kets |V 〉 defined above. We will consider three cases:

1. An incomplete IPS V0 consisting of all finite linear combinations of the basis
kets, i.e., all kets of the form |V 〉 =

∑n
j=1 vj|j〉 where n is some positive integer.

Each such ket can be represented as an infinite column vector with only a finite
number of nonzero components. The dual vector space V

∗
0 consists of all bras

having finite components in the basis {〈j|}, irrespective of whether the number
of nonzero components is finite or infinite. Therefore, V

∗
0 is much larger than V0.

V0 is incomplete in the sense that there exist sequences of kets |Vn〉, n = 1, 2, . . .,
such that (i) |Vn〉 ∈ V0 for all finite n; and (ii) the limit ket |V∞〉 = limn→∞ |Vn〉
is well-defined and has a finite norm, but |V∞〉 6∈ V0. For instance, consider the
sequence |Vn〉 =

∑n
j=1 j

−1|j〉, for which 〈V∞|V∞〉 = π2/6 < ∞, but |V∞〉 lies
outside V0 because it has an infinite number of nonzero components.



Example relevant to QM: The IPS C[a, b] of all functions f(x) that are continuous
and square-integrable on a finite interval [a, b], with the inner product defined

as 〈g|f〉 =
∫ b

a
dx g∗(x)f(x). To see that this IPS is incomplete, consider the

sequence of functions fn(x) = arctannx, n = 1, 2, . . ., defined on any finite interval
that includes x = 0. Although fn(x) ∈ C[a, b] for all finite n, limn→∞ fn(x) =
(π/2) sgnx is discontinuous at x = 0, and therefore does not belong to C[a, b].

2. A Hilbert space V2 consisting of all kets |V 〉 having a finite norm
√∑∞

j=1 |vj|2,
irrespective of whether the number of nonzero components is finite or infinite.
Formally, V2 is the completion of V0 with respect to the distance ||V −W ||: V2

contains all the vectors in V0, plus the limit of all convergent sequences |Vn〉 ∈
V0, n = 1, 2 . . ., with convergence being defined by limn→∞ ||Vn+1 − Vn|| = 0.
The correspondence between V2 and V

∗
2 is 1:1.

Example relevant to QM: The IPS L2[a, b] of all complex-valued functions of one
real argument that are square-integrable on the finite interval [a, b]: L2[a, b] =

{f(x) | ∫ b

a
dx|f(x)|2 < ∞}. Fourier’s theorem guarantees that this space has a

countably infinite orthonormal basis {fj(x)} that is complete in the sense that any
square-integrable f(x) can be approximated to arbitrary accuracy via a Fourier
sum: limn→∞ ||f −

∑n
j=1 vjfj|| = 0 for all f ∈ L2[a, b].

3. A restricted IPS VR consisting of all kets |V 〉 from V2 that satisfy some restriction
stronger than having a finite norm. Since VR is a subset of V2, every bra in V

∗
2

has a finite inner product with every ket in VR. In general, however, V
∗
R is larger

than V
∗
2, containing some bras from V

∗ that have a finite inner product with every
ket in VR but an infinite inner product with at least one ket from V2.

Example: The set of all kets |V 〉 from V2 that satisfy
∑∞

j=1 j
m|vj|2 < ∞ for all

positive integers m. (We’ll see another example of a restricted IPS in the last
section.)

Comparing these examples, we see that V0 ⊂ VR ⊂ V2 and V
∗
2 ⊂ V

∗
R ⊂ V

∗
0, with only

V2 ←→ V
∗
2 being 1:1.

More on Hilbert Spaces

• A Hilbert space is any IPS that is complete with respect to the distance defined by the
inner product. All finite-dimensional IPS’s are complete, and hence they are Hilbert
spaces, but this is not the case for all infinite-dimensional IPS’s.

• In quantum mechanics, we deal only with separable Hilbert spaces: those that have a
countable (finite or infinite) basis. The Hilbert space L2[a, b] defined above is separable.

• Another separable Hilbert space is the space L2 ≡ L2[−∞,∞]. It is not obvious that L2

has a countably infinite basis because the natural generalization of the Fourier series
to an infinite interval—the Fourier transform—involves a continuum of non-square-
integrable basis functions of the form exp(ikx), −∞ ≤ k ≤ ∞. However, it turns out
to be possible to reproduce any square-integrable f(x) to arbitrary accuracy using a
countable basis of orthonormal, square-integrable wave packets.



Coordinate and Plane-Wave Bases for L2[a, b] and L2

• When working with the space L2[a, b] (on either a finite interval or the entire real line),
it is useful to formally define the set {|x′〉, a ≤ x′ ≤ b}, satisfying the orthonormality
condition 〈x′|x′′〉 = δ(x′ − x′′). Here, |x′〉 represents a function that differs from zero
only at x = x′, and 〈x′| projects out the x = x′ component of an arbitrary ket |f〉,
i.e., 〈x′|f〉 = f(x′). The kets |x′〉 form a complete basis, in the sense that any ket

in L2[a, b] can be written |f〉 =
∫ b

a
dx′f(x′)|x′〉. (Actually, the uncountable set {|x′〉}

forms an overcomplete basis, since L2[a, b] can be spanned using a countable basis.)

The completeness relation for this basis is
∫ b

a
dx′ |x′〉〈x′| = I.

• Another useful basis for L2 is the set {|k〉, −∞ ≤ k ≤ ∞}, satisfying the orthonormal-
ity condition 〈k′|k′′〉 = δ(k′−k′′). Here 〈x|k〉 = exp(ikx)/

√
2π is an infinite plane wave

having wave vector k, and 〈k| projects out the Fourier component of an arbitrary ket
|f〉 at wave vector k, i.e., 〈k|f〉 = f(k) =

∫ ∞
−∞ dx f(x) exp(−ikx)/√2π. The full ket

can be written |f〉 =
∫ ∞
−∞dk f(k)|k〉. (NB: For L2[a, b], one instead uses a countably

infinite basis of unit-normalizable functions that are periodic on [a, b].)

• The ket |k〉 defined above is an eigenket of the operator K = −i d/dx, which has the
fundamental property that K|f〉 = |−i df/dx〉 [hence, 〈x′|K|f〉 = −i df(x)/dx|x=x′ ].
The adjoint of this operator can be defined through its matrix elements:

〈f |K†|g〉 = 〈g|K|f〉∗

⇒
∫ b

a

dx f ∗(x)K†g(x) =

(
−i

∫ b

a

dx g∗(x)df(x)/dx

)∗

= 〈f |K|g〉+ [if ∗(x)g(x)]ba (by parts).

Therefore, the operator K is Hermitian (i.e., self-adjoint) only if the last term vanishes.
This condition is satisfied if we consider only functions that vanish at x = a and x = b,
or if we restrict ourselves to functions that are periodic on the interval a ≤ x ≤ b.
Less obviously (but see Shankar p. 66), the kets |k〉 can also be considered to meet the
condition on the infinite line [−∞,∞].

• Notice that 〈x|x〉 = δ(0) “=” ∞, so |x〉 does not belong to L2[a, b] or L2. (Strictly, |x〉
does not even represent a function, but rather a distribution.) Similarly, 〈k|k〉 = δ(0)
“=” ∞, so |k〉 does not belong to L2. There are three ways to deal with this:

1. Avoid using {|x〉} and {|k〉} at all. This solution is preferred by mathematical
purists, but it is inconvenient for quantum mechanics because these kets turn out
to be the eigenkets of the position and momentum operators, respectively.

2. Describe physical states by kets |ψ〉 from a restricted IPS LR of square-integrable
functions that die off exponentially as |x| → ∞, and eigenfunctions of operators by
bras 〈ω| from the dual space L∗

R, which contains both {〈x|} and {〈k|}. Calculate
inner products 〈ω|ψ〉, but never use {|ω}. This solution is promoted by Ballentine.

3. Work with a physical Hilbert space consisting of the Hilbert space of square-
normalizable functions, augmented by all delta-function normalized functions.
This is the practical solution adopted by the majority of physicists (without con-
sciously thinking about it).


