The Postulates of Nonrelativistic Quantum Mechanics

- The following postulates are based on those appearing in Shankar Section 4.1. They apply to pure states of a single, pointlike particle in one spatial dimension. Generalizations to mixed states, multiple particles and/or higher dimensions will be discussed later.
I. The state of the particle is represented by a vector $|\psi(t)\rangle$ in a physical Hilbert space.
II. To each dynamical variable ω there corresponds a linear Hermitian operator Ω acting in the physical Hilbert space.
III. If the particle is in a state $|\psi\rangle$, then measurement of the dynamical variable ω will yield one of the eigenvalues ω_{m} of Ω. After the measurement, the state of the particle will have been reduced from $|\psi\rangle$ to an eigenvector $\left|\omega_{m}\right\rangle$ corresponding to the eigenvalue ω_{m}. The probability for this outcome is proportional to $\left|\left\langle\omega_{m} \mid \psi\right\rangle\right|^{2}$.
IV. The state vector obeys the Schrödinger equation of motion:

$$
i \hbar \frac{d}{d t}|\psi(t)\rangle=H|\psi(t)\rangle,
$$

where H is the Hamiltonian operator and $\hbar=h / 2 \pi, h$ being Planck's constant.

- In simple cases, the quantum mechanical description of a particle can be derived from the classical Hamiltonian formulation using the following quantization procedure:

1. Replace the position x by the operator X having the eigenkets $|x\rangle$ introduced in Ch. 1, such that $\langle x| X\left|x^{\prime}\right\rangle=x \delta\left(x-x^{\prime}\right)$.
2. Replace the momentum p by the operator $P=\hbar K$, where K was introduced in Ch. 1. Note that $\langle x| P\left|x^{\prime}\right\rangle=-i \hbar \delta^{\prime}\left(x-x^{\prime}\right)=-i \hbar \delta\left(x-x^{\prime}\right) \partial / \partial x^{\prime}$.
3. Construct all other operators (including the Hamiltonian H) from the corresponding classical dynamical variables via the recipe

$$
\Omega(X, P, t)=\omega(x \rightarrow X, p \rightarrow P, t)
$$

- The postulates and quantization prescription given above are not very useful without a definition of each of the italicized terms. The physical Hilbert space has already been defined, while dynamical variables should be familiar from classical mechanics. The meaning of the remaining terms will be discussed in class. We will see that Postulate III is not universally accepted.

