The Postulates of Nonrelativistic Quantum Mechanics

- The following postulates are based on those appearing in Shankar Section 4.1. They apply to *pure states* of a single, pointlike particle in one spatial dimension. Generalizations to *mixed states*, multiple particles and/or higher dimensions will be discussed later.
 - I. The state of the particle is represented by a vector $|\psi(t)\rangle$ in a physical Hilbert space.
 - II. To each dynamical variable ω there corresponds a linear Hermitian operator Ω acting in the physical Hilbert space.
 - III. If the particle is in a state $|\psi\rangle$, then *measurement* of the dynamical variable ω will yield one of the eigenvalues ω_m of Ω . After the measurement, the state of the particle will have been *reduced* from $|\psi\rangle$ to an eigenvector $|\omega_m\rangle$ corresponding to the eigenvalue ω_m . The *probability* for this outcome is proportional to $|\langle \omega_m | \psi \rangle|^2$.
 - IV. The state vector obeys the Schrödinger equation of motion:

$$i\hbar \frac{d}{dt}|\psi(t)\rangle = H|\psi(t)\rangle,$$

where H is the Hamiltonian operator and $\hbar = h/2\pi$, h being Planck's constant.

- In *simple cases*, the quantum mechanical description of a particle can be derived from the classical Hamiltonian formulation using the following quantization procedure:
 - 1. Replace the position x by the operator X having the eigenkets $|x\rangle$ introduced in Ch. 1, such that $\langle x|X|x'\rangle = x\delta(x-x')$.
 - 2. Replace the momentum p by the operator $P = \hbar K$, where K was introduced in Ch. 1. Note that $\langle x|P|x' \rangle = -i\hbar \delta'(x-x') = -i\hbar \delta(x-x')\partial/\partial x'$.
 - 3. Construct all other operators (including the Hamiltonian H) from the corresponding classical dynamical variables via the recipe

$$\Omega(X, P, t) = \omega(x \to X, p \to P, t).$$

• The postulates and quantization prescription given above are not very useful without a definition of each of the italicized terms. The *physical Hilbert space* has already been defined, while *dynamical variables* should be familiar from classical mechanics. The meaning of the remaining terms will be discussed in class. We will see that Postulate III is not universally accepted.