PHY 6645 Fall 2003

K. Ingersent

Rotation Through 2π : SO(3) vs SU(2), Superselection, and Time Reversal

• It is a general feature of all states of half-integer angular momentum that any rotation through an angle of 2π ,

$$U[R(2\pi\hat{\boldsymbol{\omega}})] \equiv U[R(2\pi)] = -1.$$

- We saw this explicitly for $j = \frac{1}{2}$ (actually, $s = \frac{1}{2}$).
- The proof is also straightforward for arbitrary j in the case $\hat{\boldsymbol{\omega}} = \hat{\mathbf{z}}$:

$$U[R(2\pi\hat{\mathbf{z}})]|j,m\rangle = \exp(-i2\pi J_z/\hbar)|j,m\rangle$$

= $\exp(-i2\pi m)|j,m\rangle$
= $(-1)^{2j}|j,m\rangle$,

since m = j - k, where k is an integer.

• For arbitrary j and $\hat{\boldsymbol{\omega}}$, it is necessary to rotate the $|j, m\rangle$'s into eigenstates of $\hat{\boldsymbol{\omega}} \cdot \mathbf{J}$, apply $U[R(2\pi\hat{\boldsymbol{\omega}})]$, then rotate back. The conclusion is again

$$U[R(2\pi\hat{\mathbf{z}})]|j,m\rangle = (-1)^{2j}|j,m\rangle.$$

- Important: $U[R(2\pi)] = -1$ means that the state vector is multiplied by -1, not that the spin (or its expectation value $\langle \mathbf{S} \rangle$) changes sign.
- This peculiar feature can be traced to the properties of the matrices that represent the symmetry operators:
 - Spatial rotations have the SO(3) group properties of 3×3 special orthogonal matrices, for which a 2π rotation equals the identity.
 - The rotation operators for a spin- $\frac{1}{2}$ system, $U[R(\boldsymbol{\omega})] = \cos(\omega/2) I i \sin(\omega/2) \hat{\boldsymbol{\omega}} \cdot \boldsymbol{\sigma}$, span the set of 2×2 unitary unimodular¹ matrices

$$U = \left(\begin{array}{cc} a & b \\ -b^* & a^* \end{array}\right),$$

where $|a|^2 + |b|^2 = 1$. This set forms the group SU(2) under matrix multiplication.

- There is a 2:1 mapping of the elements of SU(2) onto those of SO(3). Formally, U(a, b) and U(-a, -b) correspond to the same 3×3 matrix of SO(3).
- Strictly, the $D^{(j)}$ matrices introduced previously are irreducible representations of SU(2). The odd-dimensional (integer j) representations do not preserve the distinction between ω and $\omega + 2\pi$ rotations; these matrices also serve as representations of SO(3).

¹A general 2 × 2 unitary matrix can be written $U(a,b) = \begin{pmatrix} a & b \\ -b^*e^{i\theta} & a^*e^{i\theta} \end{pmatrix}$, where $|a|^2 + |b|^2 = 1$ and θ is real; then det $U = e^{i\theta}$. "Unimodular" means det U = 1, or $\theta = 2\pi$ times an integer.

• We have seen that that rotations through ω and $\omega + 2\pi$ about the same axis are identical for spatial rotations, but inequivalent for spin rotations.

However, we will take it as axiomatic that all physical observables Ω are invariant under 2π rotations, i.e.,

$$[\Omega, U[R(2\pi)]] = 0.$$

This assumption leads to a superselection rule: no operator corresponding to a physical observable can have nonvanishing matrix elements between a state $|+\rangle$ of integer angular momentum and a state $|-\rangle$ of half-integer angular momentum.

$$\langle + | U[R(2\pi)] \Omega | - \rangle = \langle + | \Omega U[R(2\pi)] | - \rangle,$$

$$+ \langle + | \Omega | - \rangle = - \langle + | \Omega | - \rangle,$$

$$\langle + | \Omega | - \rangle = 0.$$

• Finally, 2π rotations are connected with *time-reversal symmetry:* Recall that in the passive picture, we defined the time-reversal operator T by

$$\mathbf{R}' = T^{-1} \mathbf{R} T = \mathbf{R},$$

and
$$\mathbf{P}' = T^{-1} \mathbf{P} T = -\mathbf{P},$$
$$\Rightarrow \mathbf{L}' = T^{-1} \mathbf{L} T = -\mathbf{L}.$$

In order to be consistent, we must require

$$\mathbf{S}' = T^{-1} \, \mathbf{S} \, T = -\mathbf{S}.$$

As shown by Ballentine (p. 382), the form of the time-reversal operator appropriate for the representation $\psi_o(\mathbf{r}, t)\chi(t) = \langle \mathbf{r} | \otimes \langle s, m | \psi(t) \rangle$ is

$$T = \exp(-i\pi S_y/\hbar) C,$$

where C is the complex conjugation operator (acting on both ψ_{o} and χ).

Recalling that $iS_y = \frac{1}{2}(S_+ + S_-)$, where $S_{\pm}|s,m\rangle = \sqrt{(s \mp m)(s \pm m + 1)}\hbar|s,m\pm 1\rangle$, we see that $\exp(-i\pi S_y/\hbar)$ has a *real* matrix representation in the basis of common eigenkets of S^2 and S_z . Then

$$T^{2} = \exp(-i\pi S_{y}/\hbar) C \exp(-i\pi S_{y}/\hbar) C$$

= $\exp(-i\pi S_{y}/\hbar) \exp(-i\pi S_{y}/\hbar) C C$
= $\exp(-i2\pi S_{y}/\hbar).$

Since $\exp(-i2\pi L_y/\hbar) = 1$ always, and $[S_y, L_y] = 0$, we can write

$$T^2 = \exp(-i2\pi J_y/\hbar) \equiv U[R(2\pi)] = (-1)^{2j}$$

This justifies the claim made previously that $T^2 = +1$ [-1] for particles having integer [half-integer] angular momentum.