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Rotation Through 2π: SO(3) vs SU(2), Superselection, and Time Reversal

• It is a general feature of all states of half-integer angular momentum that any rotation
through an angle of 2π,

U [R(2πω̂)] ≡ U [R(2π)] = −1.

◦ We saw this explicitly for j = 1
2

(actually, s = 1
2
).

◦ The proof is also straightforward for arbitrary j in the case ω̂ = ẑ:

U [R(2πẑ)] |j,m〉 = exp(−i2πJz/h̄) |j,m〉
= exp(−i2πm) |j,m〉
= (−1)2j|j,m〉,

since m = j − k, where k is an integer.

◦ For arbitrary j and ω̂, it is necessary to rotate the |j,m〉’s into eigenstates of ω̂ ·J,
apply U [R(2πω̂)], then rotate back. The conclusion is again

U [R(2πẑ)] |j,m〉 = (−1)2j|j,m〉.

◦ Important: U [R(2π)] = −1 means that the state vector is multiplied by −1, not
that the spin (or its expectation value 〈S〉) changes sign.

• This peculiar feature can be traced to the properties of the matrices that represent the
symmetry operators:

◦ Spatial rotations have the SO(3) group properties of 3 × 3 special orthogonal
matrices, for which a 2π rotation equals the identity.

◦ The rotation operators for a spin-1
2

system, U [R(ω)] = cos(ω/2) I−i sin(ω/2) ω̂·σ,
span the set of 2× 2 unitary unimodular1 matrices

U =

(
a b
−b∗ a∗

)
,

where |a|2 + |b|2 = 1. This set forms the group SU(2) under matrix multiplication.

◦ There is a 2:1 mapping of the elements of SU(2) onto those of SO(3). Formally,
U(a, b) and U(−a,−b) correspond to the same 3× 3 matrix of SO(3).

◦ Strictly, the D(j) matrices introduced previously are irreducible representations
of SU(2). The odd-dimensional (integer j) representations do not preserve the
distinction between ω and ω+2π rotations; these matrices also serve as represen-
tations of SO(3).

1A general 2× 2 unitary matrix can be written U(a, b) =
(

a b
−b∗eiθ a∗eiθ

)
, where |a|2 + |b|2 = 1 and

θ is real; then detU = eiθ. “Unimodular” means detU = 1, or θ = 2π times an integer.



• We have seen that that rotations through ω and ω+2π about the same axis are identical
for spatial rotations, but inequivalent for spin rotations.

However, we will take it as axiomatic that all physical observables Ω are invariant
under 2π rotations, i.e.,

[Ω, U [R(2π)] ] = 0.

This assumption leads to a superselection rule: no operator corresponding to a phys-
ical observable can have nonvanishing matrix elements between a state |+〉 of integer
angular momentum and a state |−〉 of half-integer angular momentum.

Proof:

〈+|U [R(2π)] Ω |−〉 = 〈+|ΩU [R(2π)] |−〉,
+〈+|Ω|−〉 = −〈+|Ω|−〉,
〈+|Ω|−〉 = 0.

• Finally, 2π rotations are connected with time-reversal symmetry:

Recall that in the passive picture, we defined the time-reversal operator T by

R′ = T−1 RT = R,

and P′ = T−1 PT = −P,

⇒ L′ = T−1 LT = −L.

In order to be consistent, we must require

S′ = T−1 ST = −S.

As shown by Ballentine (p. 382), the form of the time-reversal operator appropriate
for the representation ψo(r, t)χ(t) = 〈r| ⊗ 〈s,m|ψ(t)〉 is

T = exp(−iπSy/h̄)C,

where C is the complex conjugation operator (acting on both ψo and χ).

Recalling that iSy = 1
2
(S+ + S−), where S±|s,m〉 =

√
(s∓m)(s±m+ 1)h̄|s,m ± 1〉,

we see that exp(−iπSy/h̄) has a real matrix representation in the basis of common
eigenkets of S2 and Sz. Then

T 2 = exp(−iπSy/h̄)C exp(−iπSy/h̄)C

= exp(−iπSy/h̄) exp(−iπSy/h̄)C C

= exp(−i2πSy/h̄).

Since exp(−i2πLy/h̄) = 1 always, and [Sy, Ly] = 0, we can write

T 2 = exp(−i2πJy/h̄) ≡ U [R(2π)] = (−1)2j.

This justifies the claim made previously that T 2 = +1 [−1] for particles having integer
[half-integer] angular momentum.


