The State-Operator Formulation of Quantum Mechanics

- The state operator or density operator ρ is a Hermitian operator acting in the Hilbert space used to describe a system (or ensemble of systems). Its fundamental property is that the expectation value of any observable operator Ω in the state ρ is given by

$$
\begin{equation*}
\langle\Omega\rangle=\operatorname{Tr}(\rho \Omega) \equiv \operatorname{Tr}(\Omega \rho) \tag{1}
\end{equation*}
$$

Special cases:

$$
\begin{aligned}
\Omega=I: & \operatorname{Tr} \rho & =1 \\
\Omega=P_{\omega}: & \operatorname{Prob}(\omega) & =\operatorname{Tr}\left(\rho P_{\omega}\right) .
\end{aligned}
$$

- The state operator for a pure state (or pure ensemble) described by the unit-normalized state vector $|\psi\rangle$ is

$$
\rho=|\psi\rangle\langle\psi| .
$$

It has the following properties:

1. Whereas the state vector is arbitrary up to an overall phase, $|\psi\rangle$ and $e^{i \theta}|\psi\rangle$ being physically equivalent for real θ, the state operator is unique:

$$
e^{-i \theta}|\psi\rangle\langle\psi| e^{i \theta}=|\psi\rangle\langle\psi| .
$$

2. The expectation value of Ω is indeed given by Eq. (1):

$$
\begin{aligned}
\langle\Omega\rangle & =\langle\psi| \Omega|\psi\rangle=\sum_{j}\langle\psi \mid j\rangle\langle j| \Omega|\psi\rangle=\sum_{j}\langle j| \Omega|\psi\rangle\langle\psi \mid j\rangle \\
& =\operatorname{Tr}(\Omega \rho) \equiv \operatorname{Tr}(\rho \Omega)
\end{aligned}
$$

3. ρ has a complete orthonormal basis of eigenkets. It has one eigenvalue equal to 1 with eigenket $|\psi\rangle$. The remaining eigenvalues are all equal to 0 .
4. In the Schrödinger picture,

$$
\rho(t)=U(t)|\psi(0)\rangle\langle\psi(0)| U^{\dagger}(t)=U(t) \rho(0) U^{\dagger}(t)
$$

Therefore,

$$
\frac{d \rho}{d t}=-\frac{i}{\hbar}[H(t), \rho(t)] \quad \text { (note the overall sign of the RHS). }
$$

In the Heisenberg picture, by contrast,

$$
\rho_{H}(t)=\rho(0) \quad \text { while } \quad \Omega_{H}(t)=U(t)^{\dagger} \Omega U(t)
$$

5. The matrix representation of the state operator in a particular orthonormal basis is called the density matrix.
In the specific case of a point-like particle in one spatial dimension,

$$
\langle x| \rho\left|x^{\prime}\right\rangle=\langle x \mid \psi\rangle\left\langle\psi \mid x^{\prime}\right\rangle=\psi(x) \psi^{*}\left(x^{\prime}\right)
$$

so the diagonal matrix elements give the probability density $|\psi(x)|^{2}$.

- The most general state operator, describing a mixed state (or mixed ensemble), can be cast in the form

$$
\rho=\sum_{k=1}^{m} w_{k}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|,
$$

where each of the real weights w_{k} satisfies $0 \leq w_{k} \leq 1$. It is not necessary that different $\left|\psi_{k}\right\rangle$'s be orthogonal, or that m be less than n, the dimension of the vector space.
A general state operator has the following properties:

1. Normalization: from Eq. (1),

$$
\operatorname{Tr} \rho=1 \quad \Rightarrow \quad \sum_{k} w_{k}=1
$$

2. Positive semi-definiteness:

$$
\langle\phi| \rho|\phi\rangle \geq 0 \quad \text { for all possible }|\phi\rangle \text {. }
$$

3. Time evolution (Schrödinger picture):

$$
\frac{d \rho}{d t}=-\frac{i}{\hbar}[H(t), \rho(t)], \quad \rho(t)=U(t) \rho(0) U^{\dagger}(t)
$$

4. Diagonalization: ρ has a complete orthonormal eigenbasis $\left\{\left|p_{j}\right\rangle\right\}$, such that

$$
\rho=\sum_{j=1}^{n} p_{j}\left|p_{j}\right\rangle\left\langle p_{j}\right| .
$$

Properties 1 and 2 imply that $\sum_{j} p_{j}=1$ and $p_{j} \geq 0$. It follows that

$$
0 \leq p_{j} \leq 1 \quad \text { and } \quad \operatorname{Tr} \rho^{2}=\sum_{j} p_{j}^{2} \leq 1
$$

5. $\operatorname{Tr} \rho^{2}=1$ only in a pure state, for which $p_{j}=\delta_{j, m}$ and $\rho=\left|p_{m}\right\rangle\left\langle p_{m}\right|$.
$\operatorname{Tr} \rho^{2}<1$ is the signature of a mixed state, in which the state operator cannot be cast as a single projection operator, i.e., $\rho \neq|\psi\rangle\langle\psi|$.
6. Since $\operatorname{Tr}(A+B)=\operatorname{Tr} A+\operatorname{Tr} B$,

$$
\langle\Omega\rangle=\sum_{k} w_{k}\left\langle\psi_{k}\right| \Omega\left|\psi_{k}\right\rangle=\sum_{j} p_{j}\left\langle p_{j}\right| \Omega\left|p_{j}\right\rangle,
$$

i.e., each expectation value in a mixed state is the weighted average of the corresponding expectation values in the pure states forming the mixture. The averaging process is essentially classical: there are no quantum-mechanical interference terms between the different pure states.

