The WKB Connection Formulae

The connection formulae, used to relate the WKB wave functions on either side of a classical turning point (located at $x=a$), can be summarized as follows:

$$
\begin{align*}
& \psi_{-}(x) \longrightarrow \sqrt{\pi|l|} A i\left(\frac{x-a}{l}\right) \longrightarrow 2 \psi_{c}(x) \tag{1}\\
& \psi_{+}(x) \longleftarrow-\sqrt{\pi|l|} B i\left(\frac{x-a}{l}\right) \longleftarrow-\psi_{s}(x) \tag{2}
\end{align*}
$$

where

$$
\begin{array}{ll}
\psi_{ \pm}(x)=\frac{1}{\sqrt{\kappa(x)}} \exp \left[\pm \int \kappa\left(x^{\prime}\right) d x^{\prime}\right], & l=\left(\frac{\hbar^{2}}{2 m|g|}\right)^{1 / 3} \operatorname{sgn} g, \quad g=\left.\frac{d V}{d x}\right|_{x=a} \\
\psi_{c}(x)=\frac{1}{\sqrt{k(x)}} \cos \left[\int k\left(x^{\prime}\right) d x^{\prime}-\frac{\pi}{4}\right], \quad \psi_{s}(x)=\frac{1}{\sqrt{k(x)}} \sin \left[\int k\left(x^{\prime}\right) d x^{\prime}-\frac{\pi}{4}\right] \tag{4}
\end{array}
$$

All integration is carried out from $\min (x, a)$ to $\max (x, a)$, so each integral has a non-negative value which grows with $|x-a|$. With this convention, Eqs. (1)-(4) apply irrespective of the sign of g.
The connection formulae are exact only in the limit $\epsilon \rightarrow 0^{+}$, where $\epsilon=\sqrt{\hbar^{2} /\left(2 m l_{0}^{2} V_{0}\right)}$ is the small parameter entering the WKB treatment of the potential $V(x)=V_{0} w\left(x / l_{0}\right)$.
For $\epsilon>0$, errors arising from use of the connection formulae will be minimized if Eqs. (1) and (2) are applied in the direction of the arrows:

1. If the wave function is proportional to ψ_{c} in the classically allowed region, one cannot deduce that the wave function on the other side of the turning point is strictly proportional to ψ_{-}- only that the coefficient of ψ_{+}is subleading in ϵ. Neglect of a ψ_{+} component with even a very small coefficient would have severe consequences, because this component grows exponentially away from the turning point, and at sufficiently large distances must overshadow the exponentially shrinking ψ_{-}component.
However, if $V(x)>E$ for all x on one side of the turning point, say $x>a$, the requirement that $\psi(x) \rightarrow 0$ for $x \rightarrow \infty$ ensures that coefficient of ψ_{+}is identically zero. Then the WKB solution for $x<a$ is well-predicted by Eq. (1). The effect of finite ϵ is at worst to introduce an error in the phase of the oscillatory solution.
2. Equation (2) need only be utilized in problems involving tunneling through a finitewidth barrier, inside which the WKB wave function will generally have nonzero coefficients of both ψ_{+}and ψ_{-}. If we use Eq. (2) in the reverse direction, then in the classically allowed region we neglect a subleading ψ_{s} component; this omission can lead to a large error in the phase of the oscillatory wave function. Application of Eq. (2) in the direction shown results in neglect of a subleading ψ_{-}component in the forbidden region. The consequences of this omission are minimal, since this ψ_{-}component shrinks at an exponential rate away from the turning point.
