PHY 6646 K. Ingersent

Degenerate Rayleigh-Schrödinger Perturbation Theory

• Assume that we know the stationary states of the unperturbed Hamiltonian H_0 , namely the kets $|n,r\rangle$ satisfying $H_0|n,r\rangle = \varepsilon_n|n,r\rangle$. The integer index r $(1 \le r \le g_n)$ is used to distinguish among the g_n eigenstates of energy ε_n . (For simplicity, we assume that the vector space is has a finite or countably infinite dimension. The extension to continuous vector spaces is straightforward.)

• We seek stationary solutions $|\psi_{n,r}\rangle$ of the perturbed problem

$$(H_0 + \lambda H_1)|\psi_{n,r}\rangle = E_{n,r}|\psi_{n,r}\rangle \tag{1}$$

in the form of power-series expansions

$$|\psi_{n,r}\rangle = \sum_{j=0}^{\infty} \lambda^j |\psi_{n,r}^{(j)}\rangle, \qquad E_{n,r} = \sum_{j=0}^{\infty} \lambda^j E_{n,r}^{(j)}.$$
 (2)

Let us insert Eqs. (2) into Eq. (1), and collect terms having the same power of λ .

• At order λ^0 we have $(H_0 - E_{n,r}^{(0)})|\psi_{n,r}^{(0)}\rangle = 0$, which is satisfied by any linear combination of the unperturbed eigenkets of energy ε_n , i.e.,

$$|\psi_{n,r}^{(0)}\rangle = \sum_{t=1}^{g_n} (c_{n,r})_t |n,t\rangle, \quad \text{with} \quad E_{n,r}^{(0)} = \varepsilon_n.$$

Orthonormality requires that $\langle \psi_{n,r}^{(0)} | \psi_{n,s}^{(0)} \rangle = \sum_{t=1}^{g_n} (c_{n,r})_t^* (c_{n,s})_t = \delta_{r,s}$.

• At order λ^1 we find $(H_0 - E_{n,r}^{(0)})|\psi_{n,r}^{(1)}\rangle = (E_{n,r}^{(1)} - H_1)|\psi_{n,r}^{(0)}\rangle$. Acting from the left with $\langle m, s|$, we obtain

$$(\varepsilon_m - \varepsilon_n)\langle m, s | \psi_{n,r}^{(1)} \rangle = \delta_{m,n} E_{n,r}^{(1)}(c_{n,r})_s - \sum_{t=1}^{g_n} \langle m, s | H_1 | n, t \rangle (c_{n,r})_t.$$
 (3)

• For m = n, Eq. (3) yields

$$\sum_{t=1}^{g_n} \langle n, s | H_1 | n, t \rangle (c_{n,r})_t = E_{n,r}^{(1)}(c_{n,r})_s,$$

which is the eigenequation for H_1 in the g_n -dimensional subspace spanned by the unperturbed states of energy ε_n . It is perfectly consistent with the λ^0 result to choose the $|\psi_{n,r}^{(0)}\rangle$'s to be the eigenkets of this problem. We will assume henceforth that this is the case, so that

$$\langle \psi_{n,s}^{(0)} | H_0 + \lambda H_1 | \psi_{n,r}^{(0)} \rangle = (\varepsilon_n + \lambda E_{n,r}^{(1)}) \delta_{s,r}, \tag{4}$$

where the first-order correction to the unperturbed energy is

$$E_{n,r}^{(1)} = \langle \psi_{n,r}^{(0)} | H_1 | \psi_{n,r}^{(0)} \rangle. \tag{5}$$

Note that we *cannot* assume that $|\psi_{n,r}^{(0)}\rangle$ is an eigenket of H_1 in the full vector space. Equation (4) implies only that

$$H_1|\psi_{n,r}^{(0)}\rangle = E_{n,r}^{(1)}|\psi_{n,r}^{(0)}\rangle + \sum_{m \neq n} \sum_{t=1}^{g_m} |\psi_{m,t}^{(0)}\rangle \langle \psi_{m,t}^{(0)}|H_1|\psi_{n,r}^{(0)}\rangle.$$
 (6)

• For $m \neq n$, Eq. (3) yields

$$\langle m, s | \psi_{n,r}^{(1)} \rangle = \sum_{t=1}^{g_n} \frac{\langle m, s | H_1 | n, t \rangle}{\varepsilon_n - \varepsilon_m} (c_{n,r})_t = \frac{\langle m, s | H_1 | \psi_{n,r}^{(0)} \rangle}{\varepsilon_n - \varepsilon_m}.$$

or

$$\langle \psi_{m,s}^{(0)} | \psi_{n,r}^{(1)} \rangle = \frac{\langle \psi_{m,s}^{(0)} | H_1 | \psi_{n,r}^{(0)} \rangle}{\varepsilon_n - \varepsilon_m}, \qquad m \neq n.$$
 (7)

- If $g_n = 1$, we can drop the second label for each eigenket. Then Eqs. (5) and (7) reduce to the standard results of nondegenerate perturbation theory.
- Conversely, it appears from Eqs. (5) and (7) that the perturbative solution of the degenerate problem to order λ^1 can be obtained from that of a nondegenerate problem by substituting $|n\rangle \to |\psi_{n,r}^{(0)}\rangle$ and $\sum_m \to \sum_m \sum_{t=1}^{g_m}$. However, this conclusion is premature because Eq. (3) does not determine $\langle n, s | \psi_{n,r}^{(1)} \rangle$, or alternatively, $\langle \psi_{n,s}^{(0)} | \psi_{n,r}^{(1)} \rangle$. We will now correct this omission.
- Following a convention from the nondegenerate theory, we enforce $\langle \psi_{n,r}^{(0)} | \psi_{n,r} \rangle = 1$. Thus, $\langle \psi_{n,r}^{(0)} | \psi_{n,r}^{(j)} \rangle = 0$ for all j > 0, which includes as a special case

$$\langle \psi_{n,r}^{(0)} | \psi_{n,r}^{(1)} \rangle = 0.$$

• To determine $\langle \psi_{n,s}^{(0)} | \psi_{n,r}^{(1)} \rangle$ for $s \neq r$, it is necessary to proceed to order λ^2 in the expansion of Eq. (1):

$$(H_0 - E_{n,r}^{(0)})|\psi_{n,r}^{(2)}\rangle = (E_{n,r}^{(1)} - H_1)|\psi_{n,r}^{(1)}\rangle + E_{n,r}^{(2)}|\psi_{n,r}^{(0)}\rangle.$$

Acting from the left with $\langle \psi_{n,s}^{(0)} |$, we eliminate all but the term involving $|\psi_{n,r}^{(1)} \rangle$. Then, using the adjoint of Eq. (6) with s replacing r, we obtain

$$0 = (E_{n,r}^{(1)} - E_{n,s}^{(1)}) \langle \psi_{n,s}^{(0)} | \psi_{n,r}^{(1)} \rangle - \sum_{m \neq n} \sum_{t=1}^{g_m} \langle \psi_{n,s}^{(0)} | H_1 | \psi_{m,t}^{(0)} \rangle \langle \psi_{m,t}^{(0)} | \psi_{n,r}^{(1)} \rangle,$$

where the last inner product on the right-hand side can be evaluated using Eq. (7). Provided that $E_{n,r}^{(1)} \neq E_{n,s}^{(1)}$, we can conclude that

$$\langle \psi_{n,s}^{(0)} | \psi_{n,r}^{(1)} \rangle = \sum_{m \neq n} \sum_{t=1}^{g_m} \frac{\langle \psi_{n,s}^{(0)} | H_1 | \psi_{m,t}^{(0)} \rangle \langle \psi_{m,t}^{(0)} | H_1 | \psi_{n,r}^{(0)} \rangle}{(E_{n,r}^{(1)} - E_{n,s}^{(1)})(\varepsilon_n - \varepsilon_m)}, \qquad s \neq r.$$

• Summary: In cases of degeneracy, it is necessary to work at least to second order in λ to obtain $|\psi_{n,r}\rangle$ correct to first order. [If H_1 does not lift the degeneracy between $|\psi_{n,r}^{(0)}\rangle$ and $|\psi_{n,s}^{(0)}\rangle$ (i.e., $E_{n,r}^{(1)} = E_{n,s}^{(1)}$), then one must work to third order or higher.]