PHY 6646 K. Ingersent

Degenerate Rayleigh-Schrodinger Perturbation Theory

e Assume that we know the stationary states of the unperturbed Hamiltonian Hy, namely
the kets |n, r) satistying Hy|n, ) = €,|n,r). The integer index r (1 < r < g,,) is used to
distinguish among the g, eigenstates of energy ¢,. (For simplicity, we assume that the
vector space is has a finite or countably infinite dimension. The extension to continuous
vector spaces is straightforward.)

o We seek stationary solutions [, ,) of the perturbed problem

(HO + /\H1)|¢n,r> = En,r|¢n,r> (1>

in the form of power-series expansions
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Let us insert Egs. (2) into Eq. (1), and collect terms having the same power of .

e At order A” we have (Hy— EL))[¢{%)) = 0, which is satisfied by any linear combination
of the unperturbed eigenkets of energy ¢, i.e.,

gn

t=1
Orthonormality requires that (. [) = 37" (¢ )5 (Coys)t = O

o At order A we find (Hy — EQ)|[¢1) = (E{) — H1)[¢L)). Acting from the left with
(m, s|, we obtain
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e For m =n, Eq. (3) yields
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which is the eigenequation for H; in the g,-dimensional subspace spanned by the
unperturbed states of energy e,. It is perfectly consistent with the A\° result to choose
the Wﬁfg)’s to be the eigenkets of this problem. We will assume henceforth that this is
the case, so that
(WAl Ho + M) = (en + AEL)sr, (4)
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where the first-order correction to the unperturbed energy is

E) = (O Hy g0y (5)
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Note that we cannot assume that [¢{)) is an eigenket of H; in the full vector space.
Equation (4) implies only that

Hy[90) = EQwO) + > S [0 WU Hy %) (6)
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For m # n, Eq. (3) yields
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(WO i)y = B — m # n. (7)

If g, = 1, we can drop the second label for each eigenket. Then Egs. (5) and (7) reduce
to the standard results of nondegenerate perturbation theory.

Conversely, it appears from Eqs. (5) and (7) that the perturbative solution of the de-
generate problem to order A\! can be obtained from that of a nondegenerate problem by
substituting |n) — [¢{)) and 3°,, — ¥, >-{7,. However, this conclusion is premature
because Eq. (3) does not determine (n, s|t()), or alternatively, ({)[¢:1)). We will
now correct this omission.

Following a convention from the nondegenerate theory, we enforce ()]¢y,,) = 1
Thus, (p)[¢$)) = 0 for all j > 0, which includes as a special case

W) =
To determine () |{!)) for s # r, it is necessary to proceed to order A? in the expansion
of Eq. (1):
(Ho = EQ)D) = (B = H)[WD) + BRI

Acting from the left with
using the adjoint of Eq. (

(1#7(1 |, we ehmlnate all but the term involving [¢/{))). Then,
6) with s replacing r, we obtain

m#n t= 1

where the last inner product on the right-hand side can be evaluated using Eq. (7).
Provided that E’ ) £ E , we can conclude that

Hl m,t th
ZZ SOH [} (toin| Hi [400)

oyl EM N (en — em)

W}nr s S#T’.

Summary: In cases of degeneracy, it is necessary to work at least to second order in
A to obtain |1, ,) correct to first order. [If H; does not lift the degeneracy between
1)) and [¢{)) (ie., E{}) = E{})), then one must work to third order or higher.]



