Degenerate Rayleigh-Schrödinger Perturbation Theory

- Assume that we know the stationary states of the unperturbed Hamiltonian H_{0}, namely the kets $|n, r\rangle$ satisfying $H_{0}|n, r\rangle=\varepsilon_{n}|n, r\rangle$. The integer index $r\left(1 \leq r \leq g_{n}\right)$ is used to distinguish among the g_{n} eigenstates of energy ε_{n}. (For simplicity, we assume that the vector space is has a finite or countably infinite dimension. The extension to continuous vector spaces is straightforward.)
- We seek stationary solutions $\left|\psi_{n, r}\right\rangle$ of the perturbed problem

$$
\begin{equation*}
\left(H_{0}+\lambda H_{1}\right)\left|\psi_{n, r}\right\rangle=E_{n, r}\left|\psi_{n, r}\right\rangle \tag{1}
\end{equation*}
$$

in the form of power-series expansions

$$
\begin{equation*}
\left|\psi_{n, r}\right\rangle=\sum_{j=0}^{\infty} \lambda^{j}\left|\psi_{n, r}^{(j)}\right\rangle, \quad E_{n, r}=\sum_{j=0}^{\infty} \lambda^{j} E_{n, r}^{(j)} . \tag{2}
\end{equation*}
$$

Let us insert Eqs. (2) into Eq. (1), and collect terms having the same power of λ.

- At order λ^{0} we have $\left(H_{0}-E_{n, r}^{(0)}\right)\left|\psi_{n, r}^{(0)}\right\rangle=0$, which is satisfied by any linear combination of the unperturbed eigenkets of energy ε_{n}, i.e.,

$$
\left|\psi_{n, r}^{(0)}\right\rangle=\sum_{t=1}^{g_{n}}\left(c_{n, r}\right)_{t}|n, t\rangle, \quad \text { with } \quad E_{n, r}^{(0)}=\varepsilon_{n}
$$

Orthonormality requires that $\left\langle\psi_{n, r}^{(0)} \mid \psi_{n, s}^{(0)}\right\rangle=\sum_{t=1}^{g_{n}}\left(c_{n, r}\right)_{t}^{*}\left(c_{n, s}\right)_{t}=\delta_{r, s}$.

- At order λ^{1} we find $\left(H_{0}-E_{n, r}^{(0)}\right)\left|\psi_{n, r}^{(1)}\right\rangle=\left(E_{n, r}^{(1)}-H_{1}\right)\left|\psi_{n, r}^{(0)}\right\rangle$. Acting from the left with $\langle m, s|$, we obtain

$$
\begin{equation*}
\left(\varepsilon_{m}-\varepsilon_{n}\right)\left\langle m, s \mid \psi_{n, r}^{(1)}\right\rangle=\delta_{m, n} E_{n, r}^{(1)}\left(c_{n, r}\right)_{s}-\sum_{t=1}^{g_{n}}\langle m, s| H_{1}|n, t\rangle\left(c_{n, r}\right)_{t} . \tag{3}
\end{equation*}
$$

- For $m=n$, Eq. (3) yields

$$
\sum_{t=1}^{g_{n}}\langle n, s| H_{1}|n, t\rangle\left(c_{n, r}\right)_{t}=E_{n, r}^{(1)}\left(c_{n, r}\right)_{s}
$$

which is the eigenequation for H_{1} in the g_{n}-dimensional subspace spanned by the unperturbed states of energy ε_{n}. It is perfectly consistent with the λ^{0} result to choose the $\left|\psi_{n, r}^{(0)}\right\rangle$'s to be the eigenkets of this problem. We will assume henceforth that this is the case, so that

$$
\begin{equation*}
\left\langle\psi_{n, s}^{(0)}\right| H_{0}+\lambda H_{1}\left|\psi_{n, r}^{(0)}\right\rangle=\left(\varepsilon_{n}+\lambda E_{n, r}^{(1)}\right) \delta_{s, r}, \tag{4}
\end{equation*}
$$

where the first-order correction to the unperturbed energy is

$$
\begin{equation*}
E_{n, r}^{(1)}=\left\langle\psi_{n, r}^{(0)}\right| H_{1}\left|\psi_{n, r}^{(0)}\right\rangle . \tag{5}
\end{equation*}
$$

Note that we cannot assume that $\left|\psi_{n, r}^{(0)}\right\rangle$ is an eigenket of H_{1} in the full vector space. Equation (4) implies only that

$$
\begin{equation*}
H_{1}\left|\psi_{n, r}^{(0)}\right\rangle=E_{n, r}^{(1)}\left|\psi_{n, r}^{(0)}\right\rangle+\sum_{m \neq n} \sum_{t=1}^{g_{m}}\left|\psi_{m, t}^{(0)}\right\rangle\left\langle\psi_{m, t}^{(0)}\right| H_{1}\left|\psi_{n, r}^{(0)}\right\rangle . \tag{6}
\end{equation*}
$$

- For $m \neq n$, Eq. (3) yields

$$
\left\langle m, s \mid \psi_{n, r}^{(1)}\right\rangle=\sum_{t=1}^{g_{n}} \frac{\langle m, s| H_{1}|n, t\rangle}{\varepsilon_{n}-\varepsilon_{m}}\left(c_{n, r}\right)_{t}=\frac{\langle m, s| H_{1}\left|\psi_{n, r}^{(0)}\right\rangle}{\varepsilon_{n}-\varepsilon_{m}} .
$$

or

$$
\begin{equation*}
\left\langle\psi_{m, s}^{(0)} \mid \psi_{n, r}^{(1)}\right\rangle=\frac{\left\langle\psi_{m, s}^{(0)}\right| H_{1}\left|\psi_{n, r}^{(0)}\right\rangle}{\varepsilon_{n}-\varepsilon_{m}}, \quad m \neq n \tag{7}
\end{equation*}
$$

- If $g_{n}=1$, we can drop the second label for each eigenket. Then Eqs. (5) and (7) reduce to the standard results of nondegenerate perturbation theory.
- Conversely, it appears from Eqs. (5) and (7) that the perturbative solution of the degenerate problem to order λ^{1} can be obtained from that of a nondegenerate problem by substituting $|n\rangle \rightarrow\left|\psi_{n, r}^{(0)}\right\rangle$ and $\sum_{m} \rightarrow \sum_{m} \sum_{t=1}^{g_{m}}$. However, this conclusion is premature because Eq. (3) does not determine $\left\langle n, s \mid \psi_{n, r}^{(1)}\right\rangle$, or alternatively, $\left\langle\psi_{n, s}^{(0)} \mid \psi_{n, r}^{(1)}\right\rangle$. We will now correct this omission.
- Following a convention from the nondegenerate theory, we enforce $\left\langle\psi_{n, r}^{(0)} \mid \psi_{n, r}\right\rangle=1$. Thus, $\left\langle\psi_{n, r}^{(0)} \mid \psi_{n, r}^{(j)}\right\rangle=0$ for all $j>0$, which includes as a special case

$$
\left\langle\psi_{n, r}^{(0)} \mid \psi_{n, r}^{(1)}\right\rangle=0 .
$$

- To determine $\left\langle\psi_{n, s}^{(0)} \mid \psi_{n, r}^{(1)}\right\rangle$ for $s \neq r$, it is necessary to proceed to order λ^{2} in the expansion of Eq. (1):

$$
\left(H_{0}-E_{n, r}^{(0)}\right)\left|\psi_{n, r}^{(2)}\right\rangle=\left(E_{n, r}^{(1)}-H_{1}\right)\left|\psi_{n, r}^{(1)}\right\rangle+E_{n, r}^{(2)}\left|\psi_{n, r}^{(0)}\right\rangle .
$$

Acting from the left with $\left\langle\psi_{n, s}^{(0)}\right|$, we eliminate all but the term involving $\left|\psi_{n, r}^{(1)}\right\rangle$. Then, using the adjoint of Eq. (6) with s replacing r, we obtain

$$
0=\left(E_{n, r}^{(1)}-E_{n, s}^{(1)}\right)\left\langle\psi_{n, s}^{(0)} \mid \psi_{n, r}^{(1)}\right\rangle-\sum_{m \neq n} \sum_{t=1}^{g_{m}}\left\langle\psi_{n, s}^{(0)}\right| H_{1}\left|\psi_{m, t}^{(0)}\right\rangle\left\langle\psi_{m, t}^{(0)} \mid \psi_{n, r}^{(1)}\right\rangle,
$$

where the last inner product on the right-hand side can be evaluated using Eq. (7).
Provided that $E_{n, r}^{(1)} \neq E_{n, s}^{(1)}$, we can conclude that

$$
\left\langle\psi_{n, s}^{(0)} \mid \psi_{n, r}^{(1)}\right\rangle=\sum_{m \neq n} \sum_{t=1}^{g_{m}} \frac{\left\langle\psi_{n, s}^{(0)}\right| H_{1}\left|\psi_{m, t}^{(0)}\right\rangle\left\langle\psi_{m, t}^{(0)}\right| H_{1}\left|\psi_{n, r}^{(0)}\right\rangle}{\left(E_{n, r}^{(1)}-E_{n, s}^{(1)}\right)\left(\varepsilon_{n}-\varepsilon_{m}\right)}, \quad s \neq r .
$$

- Summary: In cases of degeneracy, it is necessary to work at least to second order in λ to obtain $\left|\psi_{n, r}\right\rangle$ correct to first order. [If H_{1} does not lift the degeneracy between $\left|\psi_{n, r}^{(0)}\right\rangle$ and $\left|\psi_{n, s}^{(0)}\right\rangle$ (i.e., $\left.E_{n, r}^{(1)}=E_{n, s}^{(1)}\right)$, then one must work to third order or higher.]

