
PHY 6646 Spring 2002 – Homework 5

Due by 5 p.m. on Friday, February 15. On-time solutions will be returned in class on
Wednesday, February 20 (ahead of the mid-term to be held on February 22). No credit will
be available for solutions submitted after 5 p.m. on Monday, February 18.

Answer all questions. To gain full credit you should explain your reasoning and show all
working. Please write neatly and include your name on the front page of your answers.

1. This problem is quite long and involved. It involves a more sophisticated treatment of
the problem of α decay than appears in Shankar, or in most other texts. However, by
the time you have worked through it, you will have the satisfaction of having reproduced
a famous application of the WKB method from nuclear physics.

The decay of a nucleus of charge (Z+2)e into a nucleus of charge Ze plus an α particle
can be crudely modeled as the problem of an α particle in a spherically symmetric
potential

V (r) =



−V0 for r < r0,

2Ze2/r for r > r0,

where r0 is roughly the nuclear radius, and V0 > 0. The α decay corresponds to the
tunneling of an α particle of energy E > 0 from the region r < r0 into the region
r > a(E), where a(E) is the classical turning point for an α particle of energy E
approaching from r =∞. The physical limit is one in which E, V0 � V (r0) = 2Ze2/r0,
and a� r0. For simplicity, we will assume that the escaping α particle is always in an
s-wave state.

(a) Set up the radial Schrödinger wave equation for u(r) =
√

4πrψ(r).

(b) Write down the general form of the WKB wave function for an s-wave state of
energy E > 0. You will need to provide a separate expression for u(r) in each of
the ranges 0 < r < r0, r0 < r < a, and r > a.

(c) Apply the four boundary conditions that must be obeyed by the wave function:

i. The exact boundary condition at r = 0.

ii. The requirement that the solution becomes a pure-outgoing wave for r →∞.

iii. The connection formulae at r = a.

iv. Continuity of u and du/dr at r = r0. Application of this boundary condition
requires some care. To simplify things, assume that the barrier is sufficiently
broad and high that you can neglect the component of the wave function that
grows exponentially as r increases into the classically forbidden region. Also,
in the spirit of the WKB approximation, when evaluating du/dr for r > r0,
you should neglect the term arising from the derivative of the amplitude of u
(which amounts to neglecting dκ/dx compared to κ2).

Hence express the wave function throughout all space in terms of the amplitude
A0 of the wave function in the region r < r0.

(d) Calculate the probability P of finding the α particle inside the nucleus (i.e., in
the region r < r0). This allows you to eliminate A0 from the wave function and
to express u(r) everywhere as a multiple of P .



(e) You should find that the amplitude of the wave function in the region r > a
depends on the integral

C = h̄−1
∫ a

r0

dr
√

2m[V (x)− E]

Show that

C =
Ze2

h̄

√
2m

E
(2φ− sin 2φ)

a� r0−→ c1Z/
√
E − c2

√
Zr0,

where cosφ =
√
r0E/(2Ze2), and c1 and c2 are independent of Z, r0, and E.

(f) Calculate the probability current I describing the rate at which particles move
outward through a sphere of radius r > a centered on the origin. The probability
current through any surface is I =

∫
j · dS, where

j =
−ih̄
2m

(ψ∗∇ψ − ψ∇ψ∗)

is the standard probability current density.

(g) Equating I from part (f) with −dP/dt, find an expression for P (t), the probability
that a given nucleus survives at least a time t without decaying. From this
determine the half-life τ1/2 defined by P (τ1/2) = 1

2
P (0).

(h) Show that the dominant E and Z dependence of the half-life is a linear variation
of ln τ1/2 with C defined in (e). This relation is observed experimentally for many
alpha emitters. [C can be estimated under two assumptions: (i) r0 ∝ A1/3, where
A is the atomic mass; (ii) E = ∆mc2, where ∆m is the difference between the rest
mass of the original nucleus and the combined rest mass of the product nucleus
and the emitted α particle.]

2. Shankar Exercise 17.2.1, with the following addition:

(1.5) Recall that the first-order correction to the unperturbed ground-state energy
always provides an upper bound on the true ground-state energy. Can you lower this
variational bound using a family of trial wave functions that includes the unperturbed
ground state?

3. Shankar Exercise 17.2.2.

Treat just the spin degrees of freedom in this problem (i.e., ignore the orbital degrees
of freedom).


