
PHY 6646 Spring 2002 – Homework 6

Due by 5 p.m. on Monday, March 11. No credit will be available for solutions submitted
after 5 p.m. on Tuesday, March 12.

Answer all questions. To gain full credit you should explain your reasoning and show all
working. Please write neatly and include your name on the front page of your answers.

1. The fine structure of hydrogen: The energy levels of the hydrogen atom deduced from
the Coulomb potential [the En’s given by Shankar (13.1.16)] must be corrected for a
number of physical effects, which produce a hierarchy of measurable energy shifts: the
fine structure (∆En/En of order α2), the Lamb shift (of order α3), and the hyperfine
splitting (of order α4), where α = e2/h̄c ≈ 1/137 is the fine-structure constant. Here
we focus on the largest of these shifts.

The fine structure arises from relativistic effects, and is most naturally obtained using
the Dirac equation (see Shankar Section 20.2), which predicts the energy levels of the
hydrogen atom to be given by Eq. (20.2.40). However, it is also possible to calculate the
fine structure within nonrelativistic quantum mechanics, treating the relativistic effects
as (given) perturbations of the pure Coulomb potential (see Shankar Section 17.3).

(a) Read Shankar’s discussion of fine structure on pp. 466–470. Note in particular
that the total fine-structure perturbation,
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commutes with the total angular momentum operators J2 and Jz, as well as with
L2 and S2. Therefore, it makes sense to work in a basis of states labeled by five
quantum numbers: n, j, mj, l, and s.

(b) Expand the relativistic result, Eq. (20.2.40), in powers of α. Show show that the
first three nonzero terms give the relativistic rest energy, the Coulomb energies
[Shankar (13.1.16)], and the first-order fine-structure shift [Shankar (17.3.22)].

2. The weak-field Zeeman effect in hydrogen: Consider the application of a weak magnetic
field B = Bẑ to a hydrogen atom, so that there is an additional Hamiltonian term (the
Zeeman term):

HZ = −γ(L + gS) ·B = −γB[Jz + (g − 1)Sz],

where γ = −e/2mc (e being assumed to be positive).

(a) Within what range of B would you expect it to be valid to treat HZ as a pertur-
bation of the fine structure considered in question 1?

(b) In order to perturb about the fine structure energies, it is necessary to calculate
matrix elements of Sz between states |n, j,mj, l, s〉. [Of course, s = 1

2
always in

the hydrogen atom. Nonetheless, keep s as an arbitrary (integer or half-integer)
quantity in this part of the question.] The Wigner-Eckart theorem (remember
that?) comes in useful here. S is a vector operator, and hence can be used to



construct a rank-1 spherical tensor. Apply Shankar (15.3.19) and the fact that
J ·S = 1

2
[J2+S2−(J−S)2] to show that the first-order energy shift can be written

〈n, j,mj, l, s|Hz|n, j,mj, l, s〉 = geffµBBmj,

where µB = eh̄/2mc is the Bohr magneton. Provide an explicit expression for the
“Landé g-factor” geff as a function of g, j, l, and s.

(c) Calculate the total ground state energy of hydrogen as a function of the field
strength B.

3. Ballentine Problem 10.14: The three-fold degenerate energy level of the hydrogen
atom, with eigenvectors |n = 2, l = 1,m = ±1, 0〉, is subjected to a perturbation of
the form H1 = b(x2 − y2), where b is a real scalar. Use degenerate perturbation theory
to determine the zero-order eigenvectors and the splitting of the energy levels to the
first order in b. (You need not evaluate the radial integrals that occur in the matrix
elements of H1, but you should determine which matrix elements are zero, which are
nonzero, and which nonzero matrix elements are equal.)

4. Shankar Exercise 18.2.1.

5. Ballentine Problem 12.10: Consider a one-dimensional harmonic oscillator of angular
frequency ω0 that is perturbed by the time-dependent potential V1(t) = bx cos ωt, where
x is the displacement of the oscillator from equilibrium. Evaluate 〈x〉 by first-order
time-dependent perturbation theory. Discuss the validity of the result for ω ≈ ω0 and
for ω far from ω0.


