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Second-Order Time-Dependent Perturbation Theory

Let us consider the extension of time-dependent perturbation theory to second order
in the interaction H1(t). The starting point is the set of differential equations

ih̄
da(j+1)

n (t)

dt
=
∑
m

〈n|H1(t)|m〉eiωnmta(j)
m (t), j = 0, 1, 2, . . . (1)

If we assume that the system starts at time t = t0 in an unperturbed stationary state
|i〉, then for any t ≥ t0,

a(0)
n (t) = δn,i, (2)

a(1)
n (t) = − i

h̄

∫ t

t0
dt′〈n|H1(t

′)|i〉eiωnit
′
, (3)

a(2)
n (t) = − i

h̄

∑
m

∫ t

t0
dt′〈n|H1(t

′)|m〉eiωnmt′a(1)
m (t′). (4)

We will study the behavior of a(2)
n (t) for three different time dependences of H1(t).

Sudden perturbation. Suppose that the perturbation turns on suddenly at time
t = t0 = 0, and is constant thereafter:

H1(t) = H̃θ(t), (5)

where H̃ contains no time dependence. One can prove by integrating the Schrödinger
equation that, unless H(t) contains a delta function δ(t), |ψ(t = 0+)〉 = |ψ(t = 0−)〉,
i.e., an instantaneous change in H produces no instantaneous change in |ψ〉.

In this case, Eqs. (2)–(4) can be used to study the transient effects of the abrupt
change in the Hamiltonian. Introducing the shorthand H̃nm = 〈n|H̃|m〉,

a(1)
n (t) = H̃ni

1 − eiωnit

h̄ωni

ωni=0−→ −iH̃ni t/h̄, (6)

a(2)
n (t) =

∑
m|ωmi 6=0

H̃nmH̃mi

h̄2ωmi

(
1 − eiωnmt

ωnm

− 1 − eiωnit

ωni

)

+
∑

m|ωmi=0

H̃nmH̃mi

h̄2ωni

(
1 − eiωnit

ωni

+ iteiωnit

)
. (7)

Care must be taken in Eq. (7) when any of the frequency denominators vanishes. For
instance, if ωni = 0, the second summand must be replaced by −1

2
H̃nmH̃mi (t/h̄)

2.

Equation (7) shows that a(2)
n (t) can be nonzero even if H̃ni = 0 and a(1)

n (t) = 0; the
system can “get from |i〉 to |n〉” (i.e., acquire a nonzero amplitude an) through a pair
of “virtual” (energy non-conserving) transitions—the first from |i〉 to an intermediate
state |m〉, the second from |m〉 to |n〉. In the limit t→ ∞, the transition rate from |i〉
to |n〉 can be nonzero due to the vanishing of any frequency denominator in Eq. (7). If
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ωni = 0, the combination of virtual transitions conserves energy overall. If ωmi = 0 or
ωnm = 0 but ωni 6= 0, a virtual transition is combined with a “real” (energy-conserving)
transition, such that energy is not conserved overall.

Even more complicated transitions, involving multiple intermediate states, are pos-
sible at higher orders in H1.

One can repeat the above for the sudden turn-on of a harmonic perturbation. Al-
though a(2)

n (t) contains many more terms, virtual transitions again feature.

Adiabatic perturbation. Now suppose instead that a perturbation turns on very
slowly, starting at t = t0 = −∞, according to

H1(t) = H̃eηt, (8)

where H̃ is again time-independent, and the turn-on rate η is a small, positive real
number. In this case,

a(1)
n (t) = − i

h̄
H̃ni

∫ t

−∞
dt′ ei(ωni−iη)t′ = −H̃ni

ei(ωni−iη)t

h̄(ωni − iη)
, (9)

and

a(2)
n (t) =

i

h̄

∑
m

H̃nmH̃mi

h̄(ωmi − iη)

∫ t

−∞
dt′ ei(ωni−2iη)t′

=
∑
m

H̃nmH̃mi

h̄2(ωni − 2iη)(ωmi − iη)
ei(ωni−2iη)t. (10)

This implies that

|ψ(t)〉 = e−iεit/h̄
∑
n

(
δn,i − H̃nie

ηt

h̄(ωni − iη)
+
∑
m

H̃nmH̃mie
2ηt

h̄2(ωni − 2iη)(ωmi − iη)

)
|n〉 + . . . (11)

Here and below, the terms “. . .” are of third order or higher in H1.
Within time-independent perturbation theory, the effect of a perturbation H1 =

H̃ ≡ H1(t = 0) is to convert the stationary state |n〉 into

|ψn〉 = |n〉 +
∑
m6=n


− H̃mn

h̄ωmn

− H̃mnH̃nn

h̄2ω2
mn

+
∑
k 6=n

H̃mkH̃kn

h̄2ωmnωkn


 |m〉 + . . . (12)

Thus, for any n 6= i,

〈ψn|ψ(0)〉 = − H̃ni

h̄(ωni − iη)
+
∑
m

H̃nmH̃mi

h̄2(ωni − 2iη)(ωmi − iη)
− H̃∗

in

h̄ωin

+
∑
m6=n

H̃∗
mnH̃mi

h̄2ωmn(ωmi − iη)
− H̃∗

inH̃nn

h̄2ω2
in

+
∑
m6=n

H̃∗
imH̃

∗
mi

h̄2ωinωmn

+ . . . (13)

With a little bit of algebra, one can show that in the adiabatic limit, described by an
infinitesimal turn-on rate η → 0+, the first- and second-order terms on the right-hand-
side of Eq. (13) all cancel, implying that (up to possible third-order corrections)

|〈ψi|ψ(t)〉|2 = 1. (14)
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Equation (14) turns out to be an exact result, which leads to . . .

The adiabatic theorem: Up to an overall phase, any eigenstate |n(H0)〉 of an initial
Hamiltonian H0 evolves smoothly under an adiabatic perturbation into the correspond-
ing eigenstate |n(H)〉 of the Hamiltonian H(t) = H0 +H1(t).

Constant perturbation and level decay. The limit η → 0+ of the slow onset
describes a perturbation that is constant in time. This type of perturbation might
describe the effect of some background interaction which has been left out of the
Hamiltonian H0. (An example is the effect of gravity on the hydrogen atom.)

Let us examine the effect of such a background interaction on the initial state |i〉.
Specializing Eqs. (2), (9), and (10) to the case n = i (keeping η finite for now),

ai(t) = 1 − i

h̄
H̃ii

eηt

η
+

i

h̄2

∑
m

|H̃mi|2
ωmi − iη

e2ηt

2η
+ . . . (15)

Hence
dai(t)

dt
= − i

h̄
H̃iie

ηt +
i

h̄2

∑
m

|H̃mi|2
ωmi − iη

e2ηt + . . . (16)

and

1

ai(t)

dai(t)

dt
= − i

h̄
H̃iie

ηt +
i

h̄2

∑
m

|H̃mi|2
ωmi − iη

e2ηt +

(
i

h̄
H̃ii

eηt

η

)(
− i

h̄
H̃iie

ηt
)

+ . . . (17)

or
d ln ai(t)

dt
= − i

h̄
H̃iie

ηt +
i

h̄2

∑
m6=i

|H̃mi|2
ωmi − iη

e2ηt + . . . (18)

Now let us take the constant-perturbation limit η → 0+. Recalling that

lim
η→0+

1

ω ± iη
= P

(
1

ω

)
∓ iπδ(ω), (19)

where P is the Cauchy principal part, we find

d ln ai(t)

dt
= −iΣi/h̄. (20)

Here,

Σi = H̃ii − P
∑
m6=i

|H̃mi|2
εm − εi

− iπ
∑
m6=i

|H̃mi|2δ(εm − εi) ≡ ∆Ei − ih̄/2τi (21)

is the (time-independent) self-energy, which has a real part

∆Ei = Re Σi = H̃ii − P
∑
m6=i

|H̃mi|2
εm − εi

, (22)

and an imaginary part

− h̄

2τi
= π

∑
m6=i

|H̃mi|2δ(εm − εi). (23)
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Equation (20) implies that

ai(t) = ai(0)e−iΣit/h̄,

or
ci(t) = 〈i|ψ(t)〉 = ci(0) e−i(εi+∆Ei)t/h̄ e−t/2τi . (24)

The real part of Σi shifts the effective eigenenergy entering the phase evolution of ci(t)
from εi to εi + ∆Ei. The imaginary part of Σi affects the magnitude of ci(t), causing
the occupation probability to decay as

|ci(t)|2 = |ci(0)|2e−t/τi . (25)

Note, from Eq. (21), that the decay rate (inverse lifetime)

τ−1
i =

2π

h̄

∑
m6=i

|H̃mi|2δ(εm − εi) (26)

is just the total Golden-rule scattering rate out of state i.
It is also of interest to replace the time-independent H̃ in Eq. (8) by H̃e−iωt+H̃†eiωt.

Within the rotating-wave approximation, the results of this section still hold with
ωmi → ωmi ± ω and εm − εi → εm − εi ± h̄ω.

Spectral broadening due to a background perturbation. Suppose that we
regard the constant perturbation H1 from the previous section as a background per-
turbation, and consider the effect of another perturbation H2(t) applied only for t > 0.
For simplicity, let us assume that H2(t) has no time dependence for t > 0, i.e.,

H2(t) = Ĥθ(t), (27)

and consider transitions from an initial state |i〉 to a stable final state |f〉. Writing

a
(0)
i (t) = exp(−iΣit/h̄) to account for the background perturbation H1, we can find

the transition amplitude due to H2:

a
(1)
f (t) = − i

h̄

∫ t

0
dt′〈f |H2(t

′)|i〉ei(ωfi−Σi/h̄)t′ = 〈f |Ĥ|i〉 1 − ei(ωfi−Σi/h̄)t

h̄ωfi − Σi

. (28)

Comparing the corresponding transition probability,

|a(1)
f (t)|2 = |〈f |Ĥ|i〉|2 1 − 2e−t/2τi cos [(εf − εi − ∆Ei)t/h̄] + e−t/τi

(εf − εi − ∆Ei)2 + (h̄/2τi)2
(29)

t�τi−→ |〈f |Ĥ|i〉|2
(εf − εi − ∆Ei)2 + (h̄/2τi)2

, (30)

with the result obtained for H1 = 0,

|a(1)
f (t)|2 = |〈f |Ĥ|i〉|2

[
sin(ωfit/2)

h̄ωfi/2

]2
t→∞−→ 2πt

h̄
|〈f |Ĥ|i〉|2δ(εf − εi), (31)

reveals two consequences of the background perturbation: (1) The transition prob-
ability saturates at long times, instead of increasing linearly. (2) The distribution of
accessible final-state energies broadens from a delta function δ(εf−εi) into a Lorentzian

P (εf ) =
1

π

h̄/2τi
(εf − εi − ∆Ei)2 + (h̄/2τi)2

. (32)
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