The WKB Connection Formulae

The WKB formula

$$
\begin{equation*}
\psi(x)=A|k(x)|^{-1 / 2} \exp \left[i \int^{x} k\left(x^{\prime}\right) d x^{\prime}\right]+B|k(x)|^{-1 / 2} \exp \left[-i \int^{x} k\left(x^{\prime}\right) d x^{\prime}\right] \tag{1}
\end{equation*}
$$

where $k(x)=\sqrt{2 m[E-V(x)]} / \hbar$ for $E>V(x)$ and $k(x)=-i \kappa(x)=-i \sqrt{2 m[V(x)-E]} / \hbar$ for $E<V(x)$, is valid only within regions where $\left|k^{\prime}(x)\right| \ll|k(x)|^{2}$. In many problems, such regions of validity are separated by "breakdown regions," in which the WKB wave function diverges unphysically due to the vanishing (or near-vanishing) of $V(x)-E$.

In general, an accurate solution of the Schrödinger equation is required within each breakdown region to establish the connection between the constants A and B describing the WKB wave functions in the allowed regions on either side.

However, a relatively simple analytical approach works when a WKB region with $E>V$ is separated from a WKB region with $E<V$ by a simple crossing of $V(x)$ and E that can be described over a sufficiently wide range of x by

$$
\begin{equation*}
V(x)-E \approx g(x-a), \quad g=d V /\left.d x\right|_{x=a} \tag{2}
\end{equation*}
$$

Based on our previous study of the linear potential, we know that the most general solution of the Schrödinger equation within a region described by Eq. (2) is $\psi(x)=C_{A} \operatorname{Ai}(s)+C_{B} \operatorname{Bi}(s)$, where $s=(x-a) / l$ and $l=\left(\hbar^{2} / 2 m|g|\right)^{1 / 3} \operatorname{sgn} g$.

Let us temporarily specialize to the case $g>0$. Since $k(x)^{2}=-s / l^{2}$, it follows that $k^{\prime}(x)=(d k / d s)(d s / d x)=-1 / \sqrt{-s} l^{2}$, and the WKB condition $\left|k^{\prime}(x)\right| \ll|k(x)|^{2}$ becomes $|s|^{3 / 2} \gg \frac{1}{2}$. Provided that the potential can be taken to be linear at least within some region $|s|<\alpha$, where $\alpha \gg 1(\alpha=5$, say $)$, then the WKB wave functions valid for $|s| \geq \alpha$ can be patched together using Airy functions for $|s| \leq \alpha$.

For $0<s<\alpha, \int_{a}^{x} \kappa\left(x^{\prime}\right) d x^{\prime}=\int_{0}^{s} \sqrt{s} d s=2 s^{3 / 2} \equiv \sigma$, so the WKB wave function can be written as linear combinations of

$$
\begin{equation*}
\kappa(x)^{-1 / 2} \exp \left[-\int_{a}^{x} \kappa\left(x^{\prime}\right) d x^{\prime}\right]=\sqrt{l} s^{-1 / 4} e^{-\sigma}=\lim _{s \gg 1} 2 \sqrt{\pi l} \operatorname{Ai}(s) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\kappa(x)^{-1 / 2} \exp \left[\int_{a}^{x} \kappa\left(x^{\prime}\right) d x^{\prime}\right]=\sqrt{l} s^{-1 / 4} e^{\sigma}=\lim _{s \gg 1} \sqrt{\pi l} \operatorname{Bi}(s) \tag{4}
\end{equation*}
$$

For $-\alpha<s<0, \int_{x}^{a} k\left(x^{\prime}\right) d x^{\prime}=\int_{0}^{|s|} \sqrt{|s|} d|s|=2|s|^{3 / 2} \equiv \sigma$, so

$$
\begin{equation*}
k(x)^{-1 / 2} \cos \left[\int_{x}^{a} k\left(x^{\prime}\right) d x^{\prime}-\pi / 4\right]=\sqrt{l}|s|^{-1 / 4} \cos (\sigma-\pi / 4)=\lim _{s \ll-1} \sqrt{\pi l} \operatorname{Ai}(s) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
k(x)^{-1 / 2} \sin \left[\int_{x}^{a} k\left(x^{\prime}\right) d x^{\prime}-\pi / 4\right]=\sqrt{l}|s|^{-1 / 4} \sin (\sigma-\pi / 4)=\lim _{s \ll-1}-\sqrt{\pi l} \operatorname{Bi}(s) . \tag{6}
\end{equation*}
$$

Matching the coefficients of each Airy function between $s<0$ and $s>0$, we obtain the connection formulae, which link WKB wave functions across a classical turning point located at $x=a$:

$$
\begin{align*}
& C \psi_{-}(x) \longrightarrow C \sqrt{\pi|l|} A i\left(\frac{x-a}{l}\right) \tag{7}\\
&-D \psi_{+}(x) \longrightarrow \tag{8}\\
& D \sqrt{\pi|l|} B i\left(\frac{x-a}{l}\right) \square \psi_{c}(x) \\
&
\end{align*}
$$

where

$$
\begin{array}{cl}
\psi_{ \pm}(x)=\kappa(x)^{-1 / 2} \exp \left[\pm \int \kappa\left(x^{\prime}\right) d x^{\prime}\right], & l=\left(\frac{\hbar^{2}}{2 m|g|}\right)^{1 / 3} \operatorname{sgn} g, \quad g=\left.\frac{d V}{d x}\right|_{x=a} \\
\psi_{c}(x)=k(x)^{-1 / 2} \cos \left[\int k\left(x^{\prime}\right) d x^{\prime}-\frac{\pi}{4}\right], & \psi_{s}(x)=k(x)^{-1 / 2} \sin \left[\int k\left(x^{\prime}\right) d x^{\prime}-\frac{\pi}{4}\right] \tag{10}
\end{array}
$$

Each integration is carried out from $\min (x, a)$ to $\max (x, a)$, so the integral has a non-negative value which grows with $|x-a|$; hence, $\left|\psi_{+}\right|$increases ($\left|\psi_{-}\right|$decreases) on moving away from the turning point. With this convention, Eqs. (7)-(10) apply irrespective of the sign of g.
Directionality: The connection formulae given above are exact only in the limit $\epsilon \rightarrow 0^{+}$, where $\epsilon=\sqrt{\hbar^{2} /\left(2 m l_{0}^{2} V_{0}\right)}$ is the small parameter entering the WKB treatment of the potential $V(x)=V_{0} w\left(x / l_{0}\right)$. For finite ϵ, errors arising from use of the connection formulae will be minimized if Eqs. (7) and (8) are applied in the direction of the arrows:

1. If the wave function is proportional to ψ_{c} in the classically allowed region, one cannot deduce that the wave function on the other side of the turning point is strictly proportional to ψ_{-}; only that the coefficient of ψ_{+}is subleading in ϵ. Neglect of a ψ_{+} component with even a very small coefficient could have severe consequences, because this component grows exponentially away from the turning point, and at sufficiently large distances must overshadow the exponentially shrinking ψ_{-}component.
However, if $V(x)>E$ for all x on one side of the turning point, say $x>a$, the requirement that $\psi(x) \rightarrow 0$ for $x \rightarrow \infty$ ensures that the coefficient of ψ_{+}is identically zero. Then the WKB solution for $x<a$ is well-predicted by Eq. (1). The effect of finite ϵ is at worst to introduce an error in the phase of the oscillatory solution.
2. Equation (8) is needed only in problems involving tunneling through a finite-width barrier, inside which the WKB wave function can have have nonzero coefficients of both ψ_{+}and ψ_{-}. If we use Eq. (8) in the reverse direction, then in the classically allowed region we neglect a subleading ψ_{s} component, possibly leading to a large error in the phase of the oscillatory wave function. Application of Eq. (8) in the direction shown results in neglect of a subleading ψ_{-}component in the forbidden region, which has minimal consequences since ψ_{-}decays exponentially away from the turning point.
Equation (8) can usefully be generalized to

$$
\begin{equation*}
D \sin \phi \psi_{+}(x) \longleftarrow \frac{D}{\sqrt{k(x)}} \cos \left[\int k\left(x^{\prime}\right) d x^{\prime}-\frac{\pi}{4}+\phi\right], \tag{11}
\end{equation*}
$$

which is valid so long as $\sin \phi$ is not approximately zero.

