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The WKB Connection Formulae

The WKB formula

D) = Alk(x)| " exp [z / xk(x’)dx'} + Blk(2)] "2 exp [—i / zk;(x/)da:’} , (1)

where k(z) = \/2m[E — V(z)|/h for E > V(2) and k(z) = —ir(z) = —i\/2m[V (z) — E]/h
for E < V(x), is valid only within regions where |k'(z)] < |k(z)|>. In many problems, such
regions of validity are separated by “breakdown regions,” in which the WKB wave function
diverges unphysically due to the vanishing (or near-vanishing) of V(x) — E.

In general, an accurate solution of the Schrodinger equation is required within each
breakdown region to establish the connection between the constants A and B describing the
WKB wave functions in the allowed regions on either side.

However, a relatively simple analytical approach works when a WKB region with £ > V'
is separated from a WKB region with £ < V' by a simple crossing of V' (z) and E that can
be described over a sufficiently wide range of x by

V(z)— E=g(x—a), g =dV/dz|,—,. (2)

Based on our previous study of the linear potential, we know that the most general solution of

the Schrodinger equation within a region described by Eq. (2) is ¢(z) = C4Ai(s) + CpBi(s),
where s = (z — a)/l and [ = (h*/2m]g|)*/® sgn g.

Let us temporarily specialize to the case g > 0. Since k(z)? = —s/I?, it follows that

K(z) = (dk/ds)(ds/dx) = —1/y/—sl?, and the WKB condition |k'(z)| < |k(z)|*> becomes

|s[*/2 > 1. Provided that the potential can be taken to be linear at least within some region

|s| < a, where @ > 1 (o = 5, say), then the WKB wave functions valid for |s| > « can be
patched together using Airy functions for |s| < a.

For 0 < s < a, [ k(z')d2' = [J \/sds = 25%/* = 7, so the WKB wave function can be
written as linear combinations of

k(x) "% exp [— /a

T

/@(x’)dx’} = Vis Ve = 11>£r% 2Vl Ai(s) (3)

and

k(x) "2 exp [/$ /i(x’)dx/] = Vs 47 = lim V7l Bi(s). (4)
For —a < 5 <0, [*k(z')da' = [} \/|37|d|s| =2|s>? =g, s0
K@) cos | [“ k(@) da' = m/4] = Vils| 7 cos( — 7/4) = lim ValAiGs) (5

and

k(z)~Y/?sin [/: k(z')dz' — 7T/4:| =Vl|s|"Y*sin(o — 7/4) = lim —V7lBi(s).  (6)
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Matching the coefficients of each Airy function between s < 0 and s > 0, we obtain
the connection formulae, which link WKB wave functions across a classical turning point
located at x = a:

Co_(z) — cﬂm(f’:;“) . 20(2) (7)
~Di(a) — DB (“11) — Dy.@) ®

where
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r=a
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Vi(x) = k(x)”" /" exp {i/ K(x )dl’} ;1 <—2m|g|> sgng. 9=

Yo(x) = k(x)™2 cos [/ k(z")dz' — %} . Us(z) = k(z)"Y%sin [/k(a:’)dm’ — %} . (10)
Each integration is carried out from min(z, a) to max(z, a), so the integral has a non-negative
value which grows with |z — al; hence, || increases (|i_| decreases) on moving away from
the turning point. With this convention, Eqgs. (7)—(10) apply irrespective of the sign of g.

Directionality: The connection formulae given above are exact only in the limit ¢ — 0T,

where € = /h?/(2mi3V;) is the small parameter entering the WKB treatment of the potential
V(z) = Vyw(x/ly). For finite €, errors arising from use of the connection formulae will be
minimized if Eqs. (7) and (8) are applied in the direction of the arrows:

1. If the wave function is proportional to 1. in the classically allowed region, one cannot
deduce that the wave function on the other side of the turning point is strictly pro-
portional to ¥ _; only that the coefficient of ¥, is subleading in €. Neglect of a ¥,
component with even a very small coefficient could have severe consequences, because
this component grows exponentially away from the turning point, and at sufficiently
large distances must overshadow the exponentially shrinking ¢~ component.

However, if V(z) > FE for all z on one side of the turning point, say = > a, the
requirement that ¢ (z) — 0 for x — oo ensures that the coefficient of ¢, is identically
zero. Then the WKB solution for x < a is well-predicted by Eq. (1). The effect of
finite € is at worst to introduce an error in the phase of the oscillatory solution.

2. Equation (8) is needed only in problems involving tunneling through a finite-width
barrier, inside which the WKB wave function can have have nonzero coefficients of
both ¢, and ¢_. If we use Eq. (8) in the reverse direction, then in the classically
allowed region we neglect a subleading 1, component, possibly leading to a large error
in the phase of the oscillatory wave function. Application of Eq. (8) in the direction
shown results in neglect of a subleading v_ component in the forbidden region, which
has minimal consequences since 1_ decays exponentially away from the turning point.

Equation (8) can usefully be generalized to

D
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which is valid so long as sin ¢ is not approximately zero.

Dsing ¢, (x) +— oS {/k(m’)dw'— %4—925 , (11)



