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The WKB Connection Formulae

The WKB formula

ψ(x) = A|k(x)|−1/2 exp
[
i
∫ x

k(x′)dx′
]

+B|k(x)|−1/2 exp
[
−i
∫ x

k(x′)dx′
]
, (1)

where k(x) =
√

2m[E − V (x)]/h̄ for E > V (x) and k(x) = −iκ(x) = −i
√

2m[V (x)− E]/h̄

for E < V (x), is valid only within regions where |k′(x)| � |k(x)|2. In many problems, such
regions of validity are separated by “breakdown regions,” in which the WKB wave function
diverges unphysically due to the vanishing (or near-vanishing) of V (x)− E.

In general, an accurate solution of the Schrödinger equation is required within each
breakdown region to establish the connection between the constants A and B describing the
WKB wave functions in the allowed regions on either side.

However, a relatively simple analytical approach works when a WKB region with E > V
is separated from a WKB region with E < V by a simple crossing of V (x) and E that can
be described over a sufficiently wide range of x by

V (x)− E ≈ g(x− a), g = dV/dx|x=a. (2)

Based on our previous study of the linear potential, we know that the most general solution of
the Schrödinger equation within a region described by Eq. (2) is ψ(x) = CAAi(s)+CBBi(s),
where s = (x− a)/l and l = (h̄2/2m|g|)1/3 sgn g.

Let us temporarily specialize to the case g > 0. Since k(x)2 = −s/l2, it follows that
k′(x) = (dk/ds)(ds/dx) = −1/

√−s l2, and the WKB condition |k′(x)| � |k(x)|2 becomes
|s|3/2 � 1

2
. Provided that the potential can be taken to be linear at least within some region

|s| < α, where α � 1 (α = 5, say), then the WKB wave functions valid for |s| ≥ α can be
patched together using Airy functions for |s| ≤ α.

For 0 < s < α,
∫ x
a κ(x

′)dx′ =
∫ s
0

√
s ds = 2s3/2 ≡ σ, so the WKB wave function can be

written as linear combinations of

κ(x)−1/2 exp
[
−
∫ x

a
κ(x′)dx′

]
=
√
ls−1/4e−σ = lim

s�1
2
√
πlAi(s) (3)

and

κ(x)−1/2 exp
[∫ x

a
κ(x′)dx′

]
=
√
ls−1/4eσ = lim

s�1

√
πlBi(s). (4)

For −α < s < 0,
∫ a
x k(x

′)dx′ =
∫ |s|
0

√
|s| d|s| = 2|s|3/2 ≡ σ, so

k(x)−1/2 cos
[∫ a

x
k(x′)dx′ − π/4

]
=
√
l|s|−1/4 cos(σ − π/4) = lim

s�−1

√
πlAi(s) (5)

and

k(x)−1/2 sin
[∫ a

x
k(x′)dx′ − π/4

]
=
√
l|s|−1/4 sin(σ − π/4) = lim

s�−1
−
√
πlBi(s). (6)



Matching the coefficients of each Airy function between s < 0 and s > 0, we obtain
the connection formulae, which link WKB wave functions across a classical turning point
located at x = a:

Cψ−(x) −→ C
√
π|l|Ai

(
x− a
l

)
−→ 2Cψc(x) (7)

−Dψ+(x) ←− D
√
π|l|Bi

(
x− a
l

)
←− Dψs(x) (8)

where

ψ±(x) = κ(x)−1/2 exp
[
±
∫
κ(x′)dx′

]
, l =

(
h̄2

2m|g|
)1/3

sgn g, g =
dV

dx

∣∣∣∣∣
x=a

, (9)

ψc(x) = k(x)−1/2 cos
[∫

k(x′)dx′ − π

4

]
, ψs(x) = k(x)−1/2 sin

[∫
k(x′)dx′ − π

4

]
. (10)

Each integration is carried out from min(x, a) to max(x, a), so the integral has a non-negative
value which grows with |x− a|; hence, |ψ+| increases (|ψ−| decreases) on moving away from
the turning point. With this convention, Eqs. (7)–(10) apply irrespective of the sign of g.

Directionality: The connection formulae given above are exact only in the limit ε → 0+,

where ε =
√
h̄2/(2ml20V0) is the small parameter entering the WKB treatment of the potential

V (x) = V0w(x/l0). For finite ε, errors arising from use of the connection formulae will be
minimized if Eqs. (7) and (8) are applied in the direction of the arrows:

1. If the wave function is proportional to ψc in the classically allowed region, one cannot
deduce that the wave function on the other side of the turning point is strictly pro-
portional to ψ−; only that the coefficient of ψ+ is subleading in ε. Neglect of a ψ+

component with even a very small coefficient could have severe consequences, because
this component grows exponentially away from the turning point, and at sufficiently
large distances must overshadow the exponentially shrinking ψ− component.

However, if V (x) > E for all x on one side of the turning point, say x > a, the
requirement that ψ(x)→ 0 for x→∞ ensures that the coefficient of ψ+ is identically
zero. Then the WKB solution for x < a is well-predicted by Eq. (1). The effect of
finite ε is at worst to introduce an error in the phase of the oscillatory solution.

2. Equation (8) is needed only in problems involving tunneling through a finite-width
barrier, inside which the WKB wave function can have have nonzero coefficients of
both ψ+ and ψ−. If we use Eq. (8) in the reverse direction, then in the classically
allowed region we neglect a subleading ψs component, possibly leading to a large error
in the phase of the oscillatory wave function. Application of Eq. (8) in the direction
shown results in neglect of a subleading ψ− component in the forbidden region, which
has minimal consequences since ψ− decays exponentially away from the turning point.

Equation (8) can usefully be generalized to

D sinφ ψ+(x) ←− D√
k(x)

cos
[∫

k(x′)dx′ − π

4
+ φ

]
, (11)

which is valid so long as sinφ is not approximately zero.


