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Degenerate Rayleigh-Schrödinger Perturbation Theory

• Assume that we know the stationary states of the unperturbed HamiltonianH0, namely
the kets |n, r〉 satisfying H0|n, r〉 = εn|n, r〉. The integer index r (1 ≤ r ≤ gn) is used to
distinguish among the gn eigenstates of energy εn. (For simplicity, we assume that the
vector space is has a finite or countably infinite dimension. The extension to continuous
vector spaces is straightforward.)

• We seek stationary solutions |ψn,r〉 of the perturbed problem

(H0 + λH1)|ψn,r〉 = En,r|ψn,r〉 (1)

in the form of power-series expansions

|ψn,r〉 =
∞∑

j=0

λj|ψ(j)
n,r〉, En,r =

∞∑

j=0

λjE(j)
n,r. (2)

Let us insert Eqs. (2) into Eq. (1), and collect terms having the same power of λ.

• At order λ0 we have (H0−E(0)
n,r)|ψ(0)

n,r〉 = 0, which is satisfied by any linear combination
of the unperturbed eigenkets of energy εn, i.e.,

|ψ(0)
n,r〉 =

gn∑

t=1

(cn,r)t|n, t〉, with E(0)
n,r = εn.

Orthonormality requires that 〈ψ(0
n,r|ψ(0)

n,s〉 =
∑gn

t=1(cn,r)
∗
t (cn,s)t = δr,s.

• At order λ1 we find (H0 − E(0)
n,r)|ψ(1)

n,r〉 = (E(1)
n,r − H1)|ψ(0)

n,r〉. Acting from the left with
〈m, s|, we obtain

(εm − εn)〈m, s|ψ(1)
n,r〉 = δm,nE

(1)
n,r(cn,r)s −

gn∑

t=1

〈m, s|H1|n, t〉(cn,r)t. (3)

• For m = n, Eq. (3) yields

gn∑

t=1

〈n, s|H1|n, t〉(cn,r)t = E(1)
n,r(cn,r)s,

which is the matrix eigenequation for H1 in the gn-dimensional subspace spanned by
the unperturbed states of energy εn. It is perfectly consistent with the λ0 result to
choose the |ψ(0)

n,r〉’s to be the eigenkets of this problem. We will assume henceforth that
this is the case, so that

〈ψ(0)
n,s|H0 + λH1|ψ(0)

n,r〉 = (εn + λE(1)
n,r)δs,r, (4)

where the first-order correction to the unperturbed energy is

E(1)
n,r = 〈ψ(0)

n,r|H1|ψ(0)
n,r〉. (5)
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Note that we cannot assume that |ψ(0)
n,r〉 is an eigenket of H1 in the full vector space.

Equation (4) implies only that

H1|ψ(0)
n,r〉 = E(1)

n,r|ψ(0)
n,r〉 +

∑

m6=n

gm∑

t=1

|ψ(0)
m,t〉〈ψ(0)

m,t|H1|ψ(0)
n,r〉. (6)

• For m 6= n, Eq. (3) yields

〈m, s|ψ(1)
n,r〉 =

gn∑

t=1

〈m, s|H1|n, t〉
εn − εm

(cn,r)t =
〈m, s|H1|ψ(0)

n,r〉
εn − εm

.

or

〈ψ(0)
m,s|ψ(1)

n,r〉 =
〈ψ(0)

m,s|H1|ψ(0)
n,r〉

εn − εm

, m 6= n. (7)

• If gn = 1, we can drop the second label for each eigenket. Then Eqs. (5) and (7) reduce
to the standard results of nondegenerate perturbation theory.

• Conversely, it appears from Eqs. (5) and (7) that the perturbative solution of the de-
generate problem to order λ1 can be obtained from that of a nondegenerate problem by
substituting |n〉 → |ψ(0)

n,r〉 and
∑

m → ∑
m

∑gm
t=1. However, this conclusion is premature

because Eq. (3) does not determine 〈n, s|ψ(1)
n,r〉, or alternatively, 〈ψ(0)

n,s|ψ(1)
n,r〉. We will

now correct this omission.

• Following a convention from the nondegenerate theory, we enforce 〈ψ(0)
n,r|ψn,r〉 = 1.

Thus, 〈ψ(0)
n,r|ψ(j)

n,r〉 = 0 for all j > 0, which includes as a special case

〈ψ(0)
n,r|ψ(1)

n,r〉 = 0.

• To determine 〈ψ(0)
n,s|ψ(1)

n,r〉 for s 6= r, it is necessary to proceed to order λ2 in the expansion
of Eq. (1):

(H0 − E(0)
n,r)|ψ(2)

n,r〉 = (E(1)
n,r −H1)|ψ(1)

n,r〉 + E(2)
n,r|ψ(0)

n,r〉.
Acting from the left with 〈ψ(0)

n,s|, we eliminate all but the term involving |ψ(1)
n,r〉. Then,

using the adjoint of Eq. (6) with s replacing r, we obtain

0 = (E(1)
n,r − E(1)

n,s)〈ψ(0)
n,s|ψ(1)

n,r〉 −
∑

m6=n

gm∑

t=1

〈ψ(0)
n,s|H1|ψ(0)

m,t〉〈ψ(0)
m,t|ψ(1)

n,r〉,

where the last inner product on the right-hand side can be evaluated using Eq. (7).

Provided that E(1)
n,r 6= E(1)

n,s, we can conclude that

〈ψ(0)
n,s|ψ(1)

n,r〉 =
∑

m6=n

gm∑

t=1

〈ψ(0)
n,s|H1|ψ(0)

m,t〉〈ψ(0)
m,t|H1|ψ(0)

n,r〉
(E

(1)
n,r − E

(1)
n,s)(εn − εm)

, s 6= r.

• Summary: In cases of degeneracy, it is necessary to work at least to second order in
λ to obtain |ψn,r〉 correct to first order. [If H1 does not lift the degeneracy between
|ψ(0)

n,r〉 and |ψ(0)
n,s〉 (i.e., E(1)

n,r = E(1)
n,s), then one must work to third order or higher.]
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