Reduction of a Dyadic to a Sum of Spherical Tensor Operators

- As an example of a reducible rank-2 tensor, consider the dyadic

$$
T_{j k}=U_{j} V_{k},
$$

where \boldsymbol{U} and \boldsymbol{V} are vector operators satisfying

$$
\left[U_{j}, J_{k}\right]=i \hbar \sum_{l} \epsilon_{j k l} U_{l}, \quad\left[V_{j}, J_{k}\right]=i \hbar \sum_{l} \epsilon_{j k l} V_{l}
$$

It is an identity that

$$
U_{j} V_{k}=\left[\frac{1}{3} \boldsymbol{U} \cdot \boldsymbol{V} \delta_{j k}\right]+\left[\frac{1}{2}\left(U_{j} V_{k}-U_{k} V_{j}\right)\right]+\left[\frac{1}{2}\left(U_{j} V_{k}+U_{k} V_{j}\right)-\frac{1}{3} \boldsymbol{U} \cdot \boldsymbol{V} \delta_{j k}\right]
$$

The three parts in square brackets have very different properties:

$$
\begin{aligned}
\frac{1}{3} \boldsymbol{U} \cdot \boldsymbol{V} \delta_{j k} & =\text { a multiple of the identity matrix, } \\
\frac{1}{2}\left(U_{j} V_{k}-U_{k} V_{j}\right) & =\frac{1}{2} \sum_{l} \epsilon_{j k l}(\boldsymbol{U} \times \boldsymbol{V})_{l}, \text { an asymmetric (traceless) tensor, } \\
\frac{1}{2}\left(U_{j} V_{k}+U_{k} V_{j}\right)-\frac{1}{3} \boldsymbol{U} \cdot \boldsymbol{V} \delta_{j k} & =\text { a symmetric, traceless tensor. }
\end{aligned}
$$

We will show below that each of these parts is associated with a spherical tensor operator, each of which transforms as a different irreducible representation of the rotation group $\mathrm{SO}(3)$.

- Associated with the vector operators \boldsymbol{U} and \boldsymbol{V} are a pair of rank-1 spherical tensor operators $U_{q}^{(1)}$ and $V_{q}^{(1)}$, where

$$
U_{1}^{(1)}=\frac{1}{\sqrt{2}}\left(-U_{x}-i U_{y}\right), \quad U_{0}^{(1)}=U_{z}, \quad U_{-1}^{(1)}=\frac{1}{\sqrt{2}}\left(U_{x}-i U_{y}\right),
$$

and similarly for \boldsymbol{V}.
These two rank-1 spherical tensor operators can be combined to form three compound spherical tensor operators:

1. A rank-0 operator,

$$
T_{0}^{(0)}=\frac{1}{3}\left(U_{1}^{(1)} V_{-1}^{(1)}-U_{0}^{(1)} V_{0}^{(1)}+U_{-1}^{(1)} V_{1}^{(1)}\right)=-\frac{1}{3} \boldsymbol{U} \cdot \boldsymbol{V}
$$

which is associated with the scalar $S=\boldsymbol{U} \cdot \boldsymbol{V}$.
2. A rank-1 operator $T_{q}^{(1)}$, with

$$
T_{1}^{(1)}=\frac{1}{\sqrt{2}}\left(U_{1}^{(1)} V_{0}^{(1)}-U_{0}^{(1)} V_{1}^{(1)}\right)=\frac{i}{2}(\boldsymbol{U} \times \boldsymbol{V})_{x}+\frac{1}{2}(\boldsymbol{U} \times \boldsymbol{V})_{y}=-\frac{i}{\sqrt{2}}(U \times V)_{1}^{(1)},
$$

and

$$
T_{q}^{(1)}=-\frac{i}{\sqrt{2}}(U \times V)_{q}^{(1)},
$$

which is associated with the vector $\boldsymbol{W}=\boldsymbol{U} \times \boldsymbol{V}$.
3. A rank-2 operator $T_{q}^{(2)}$, where

$$
\begin{aligned}
T_{ \pm 2}^{(2)} & =U_{ \pm 1}^{(1)} V_{ \pm 1}^{(1)} \\
T_{ \pm 1}^{(2)} & =\frac{1}{\sqrt{2}}\left(U_{ \pm 1}^{(1)} V_{0}^{(1)}+U_{0}^{(1)} V_{ \pm 1}^{(1)}\right) \\
T_{0}^{(2)} & =\frac{1}{\sqrt{6}}\left(U_{1}^{(1)} V_{-1}^{(1)}+2 U_{0}^{(1)} V_{0}^{(1)}+U_{-1}^{(1)} V_{1}^{(1)}\right)
\end{aligned}
$$

which is associated with the quadrupole tensor

$$
Q_{j k}=\frac{1}{2}\left(U_{j} V_{k}+U_{k} V_{j}\right)-\frac{1}{3} \boldsymbol{U} \cdot \boldsymbol{V} \delta_{j k}
$$

- It is obvious that

$$
\frac{1}{3} \boldsymbol{U} \cdot \boldsymbol{V} \delta_{j} k=\left(\begin{array}{ccc}
-T_{0}^{(0)} & 0 & 0 \\
0 & -T_{0}^{(0)} & 0 \\
0 & 0 & -T_{0}^{(0)}
\end{array}\right)
$$

After some tedious algebra, one can also show that

$$
\frac{1}{2}\left(U_{j} V_{k}-U_{k} V_{j}\right)=\frac{1}{2}\left(\begin{array}{ccc}
0 & i \sqrt{2} T_{0}^{(1)} & T_{1}^{(1)}+T_{-1}^{(1)} \\
-i \sqrt{2} T_{0}^{(1)} & 0 & -i\left(T_{1}^{(1)}-T_{-1}^{(1)}\right) \\
-\left(T_{1}^{(1)}+T_{-1}^{(1)}\right) & i\left(T_{1}^{(1)}-T_{-1}^{(1)}\right) & 0
\end{array}\right)
$$

and

$$
\begin{aligned}
& \frac{1}{2}\left(U_{j} V_{k}+U_{k} V_{j}\right)-\frac{1}{3} \boldsymbol{U} \cdot \boldsymbol{V} \delta_{j k}= \\
& \quad \frac{1}{2}\left(\begin{array}{ccc}
T_{2}^{(2)}+T_{-2}^{(2)}-\sqrt{\frac{2}{3}} T_{0}^{(2)} & -i\left(T_{2}^{(2)}-T_{-2}^{(2)}\right) & -T_{1}^{(2)}+T_{-1}^{(2)} \\
-i\left(T_{2}^{(2)}-T_{-2}^{(2)}\right) & -T_{2}^{(2)}-T_{-2}^{(2)}-\sqrt{\frac{2}{3}} T_{0}^{(2)} & i\left(T_{1}^{(2)}+T_{-1}^{(2)}\right) \\
-T_{1}^{(2)}+T_{-1}^{(2)} & i\left(T_{1}^{(2)}+T_{-1}^{(2)}\right) & \sqrt{\frac{8}{3}} T_{0}^{(2)}
\end{array}\right) .
\end{aligned}
$$

Each of these parts is irreducible, i.e., the nonzero elements of each matrix form an invariant subspace under the action of $U[R]$.

