Time-Dependent Perturbation Theory: The Photoelectric Effect

- This handout mirrors the treatment of the photoelectric effect on Shankar pp. 499–506, with two principal differences: (1) The perturbing Hamiltonian is written $H_{1E} = e \boldsymbol{E} \cdot \boldsymbol{R}$ instead of $H_{1A} = (e/mc)\boldsymbol{A} \cdot \boldsymbol{P}$. (2) The system is assumed to occupy a cubic box of sides L, whereas Shankar treats an infinite system. We comment on the significance of these differences at the end.
- The initial state is taken to belong to the innermost (or K) shell of a hydrogen-like atom of effective nuclear charge Ze, with wave function $\langle \mathbf{r}|i\rangle = \pi^{-1/2} (Z/a_0)^{3/2} \exp(-Z|\mathbf{r}|/a_0)$, where $a_0 = \hbar^2/me^2$ is the Bohr radius. This state has energy $\varepsilon_i = -Z^2 e^2/2a_0 = -(Z\alpha)^2 mc^2/2$, $\alpha = e^2/\hbar c$ being the fine-structure constant. The characteristic size of the orbital is $r_0 = a_0/Z = \hbar/(Z\alpha mc)$.

We consider a monochromatic electromagnetic plane wave, $\boldsymbol{E}(\boldsymbol{r},t) = \boldsymbol{E}_0 \cos(\boldsymbol{k} \cdot \boldsymbol{r} - \omega t)$. The electric dipole approximation is valid provided that $|\boldsymbol{k}|r_0 \ll 1$, or equivalently, $\hbar \omega \ll (Z\alpha)mc^2$. We will consider frequencies in the window $(Z\alpha)^2mc^2 \ll \hbar \omega \ll (Z\alpha)mc^2$, where not only can we make the dipole approximation, but the final-state energy is sufficiently high that the final state should be well-described by a plane wave of the form $\langle \boldsymbol{r}|f \rangle = L^{-3/2} \exp(i\boldsymbol{p}_f \cdot \boldsymbol{r}/\hbar)$ having an energy $\varepsilon_f = |\boldsymbol{p}_f|^2/2m$. (See Shankar p. 500 and the end of this handout for discussion of this plane-wave approximation.)

• In the dipole approximation, we need to calculate the dipole matrix element

$$\boldsymbol{r}_{fi} = \langle f | \boldsymbol{R} | i \rangle = A \int d^3 \boldsymbol{r} \ e^{-i\boldsymbol{p}_f \cdot \boldsymbol{r}/\hbar} \ \boldsymbol{r} \ e^{-Z|\boldsymbol{r}|/a_0}$$

$$= A \times i\hbar \ \frac{\partial}{\partial \boldsymbol{p}_f} \int d^3 \boldsymbol{r} \ e^{-i\boldsymbol{p}_f \cdot \boldsymbol{r}/\hbar} \ e^{-Z|\boldsymbol{r}|/a_0} = i\hbar \ \frac{\partial}{\partial \boldsymbol{p}_f} \langle f | i \rangle,$$

where $A = \pi^{-1/2} (Z/La_0)^{3/2}$.

The overlap integral is straightforward to evaluate (see Shankar p. 504):

$$\langle f|i\rangle = A \int d^3 \mathbf{r} \ e^{-i\mathbf{p}_f \cdot \mathbf{r}/\hbar} e^{-Z|\mathbf{r}|/a_0} = \frac{8\pi AZ/a_0}{[(Z/a_0)^2 + (p_f/\hbar)^2]^2}$$

Therefore

$$\boldsymbol{r}_{fi} = i\hbar \; \frac{8\pi AZ/a_0}{[(Z/a_0)^2 + (p_f/\hbar)^2]^3} \left(\frac{-4\boldsymbol{p}_f}{\hbar^2}\right)$$

Noting that $(Z/a_0)^2 + (p_f/\hbar)^2 = 2m(\varepsilon_f - \varepsilon_i)/\hbar^2$, we find

$$\boldsymbol{r}_{fi} = -\frac{2i\hbar}{m(\varepsilon_f - \varepsilon_i)} \,\boldsymbol{p}_f \langle f | i \rangle = -i \,\frac{4\pi A Z \hbar^5}{a_0 m^3 (\varepsilon_f - \varepsilon_i)^3} \,\boldsymbol{p}_f. \tag{1}$$

• Fermi's Golden Rule gives the scattering rate from $|i\rangle$ to $|f\rangle$ as

$$R_{i\to f} = \frac{2\pi}{\hbar} \left| \frac{e}{2} \, \boldsymbol{E}_0 \cdot \boldsymbol{r}_{fi} \right|^2 \delta(\varepsilon_f - \varepsilon_i - \hbar\omega).$$

In order to calculate the differential scattering cross-section $d\sigma/d\Omega$, defined by

$$\frac{d\sigma}{d\Omega} = \frac{\text{power absorbed by atom while emitting electrons into solid angle } d\Omega}{(\text{incident energy flux of electromagnetic field}) \times d\Omega},$$

we need to find the density of final states p_f . If we apply periodic boundary conditions to the cubic box, then the allowed final states obey

$$(p_f)_j = \hbar \frac{2\pi n_j}{L} = \frac{\hbar n_j}{L}$$
 for $j = x, y, z$

Thus, the number of allowed states in a momentum-space volume element $p_f^2 dp_f d\Omega$ is

$$\left(\frac{L}{h}\right)^3 p_f^2 \, dp_f \, d\Omega = \left(\frac{L}{h}\right)^3 m p_f \, d\varepsilon_f \, d\Omega,$$

and the power absorbed by the atom in scattering into solid angle $d\Omega$ is

$$P_{i\to d\Omega} = \hbar\omega R_{i\to d\Omega} = \hbar\omega d\Omega \int d\varepsilon_f \left(\frac{L}{h}\right)^3 mp_f R_{i\to f} = \frac{e^2\hbar p_f^3 E_0^2}{\pi} \left(\frac{Z}{m\omega a_0}\right)^5 \left|\hat{\boldsymbol{E}}_0 \cdot \hat{\boldsymbol{p}}_f\right|^2 d\Omega.$$

The incident energy flux of the electromagnetic wave is $J_{\rm in} = uc = (c/4\pi) |\boldsymbol{E}(\boldsymbol{r},t)|^2$, or, averaged over one complete cycle, $J_{\rm in} = (c/8\pi) |\boldsymbol{E}_0|^2$. Thus,

$$\frac{d\sigma}{d\Omega} = \frac{P_{i \to d\Omega}}{J_{\rm in} d\Omega} = \frac{8e^2\hbar p_f^3}{c} \left(\frac{Z}{m\omega a_0}\right)^5 \left|\hat{\boldsymbol{E}}_0 \cdot \hat{\boldsymbol{p}}_f\right|^2.$$
(2)

- Comment 1: The finite system size does not enter the final result. If one works with an infinite system, the correct density of final states is ensured through the delta-function normalization of the plane wave, i.e., $\langle \boldsymbol{r} | \boldsymbol{p} \rangle = (2\pi\hbar)^{-3/2} \exp(i\boldsymbol{p} \cdot \boldsymbol{r}/\hbar)$.
- Comment 2: Equation (2) agrees, for instance, with that obtained from H_{1E} in *Quantum Theory of Light* by R. Loudon (Clarendon Press, Oxford, 1973). On the other hand, this $d\sigma/d\Omega$ is 4 times greater than that given by Shankar, Merzbacher, and Sakurai, all of whom use H_{1A} .

This discrepancy appears to stem from the fact that the general result

$$\langle f | \mathbf{P} | i \rangle = \langle f | m \, d\mathbf{R} / dt | i \rangle = \frac{im}{\hbar} \langle f | [H, \mathbf{R}] | i \rangle = \frac{im(\varepsilon_f - \varepsilon_i)}{\hbar} \langle f | \mathbf{R} | i \rangle$$

holds only if $i\rangle$ and $|f\rangle$ are *exact* eigenstates of the same Hamiltonian. Here, $|f\rangle$ is only an approximate version of the true final state, which is a plane wave plus an incoming spherical wave (see Merzbacher p. 502). Since $|f\rangle$ is not a true eigenstate of the Coulomb Hamiltonian, different formulations of the dipole approximation are not guaranteed to produce the same result. It turns out that \mathbf{r}_{fi} given in Eq. (1) is twice the correct value. It can be shown [e.g., see Ch. 12 of *Intermediate Quantum Mechanics* by H. A. Bethe and R. Jackiw (2nd Edition, W. A. Benjamin, Reading, Massachussets, 1968)] that using H_{1E} with the exact final state wave functions yields the result obtained using H_{1A} with the plane-wave approximate wave functions.

The H_{1A} formulation does not always yield superior results. It is the H_{1E} version that gives the correct frequency distribution for photons emitted from finite-lifetime excited states [W. E. Lamb, Jr., Phys. Rev. **85**, 259 (1952).]

These examples show that calculating the effects of radiation on matter is very subtle!