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Time-Dependent Perturbation Theory: The Photoelectric Effect

e This handout mirrors the treatment of the photoelectric effect on Shankar pp. 499-506,
with two principal differences: (1) The perturbing Hamiltonian is written H1p = eE-R
instead of Hy4 = (e/mc)A - P. (2) The system is assumed to occupy a cubic box of
sides L, whereas Shankar treats an infinite system. We comment on the significance of
these differences at the end.

e The initial state is taken to belong to the innermost (or K') shell of a hydrogen-like atom
of effective nuclear charge Ze, with wave function (r|i) = 77Y2(Z/ay)3/? exp(—Z|r|/ay),
where ag = h*/me? is the Bohr radius. This state has energy &; = —Z%¢%/2ay =
—(Za)?*mc?/2, a = €?/hic being the fine-structure constant. The characteristic size of
the orbital is rg = ao/Z = h/(Zamc).

We consider a monochromatic electromagnetic plane wave, E(r,t) = Eycos(k-r—wt).
The electric dipole approximation is valid provided that |k|ry < 1, or equivalently,
hiw < (Za)mc®*. We will consider frequencies in the window (Za)*mc® < hw <
(Za)mc?, where not only can we make the dipole approximation, but the final-state
energy is sufficiently high that the final state should be well-described by a plane wave
of the form (r|f) = L=%/2 exp(ip;-r/h) having an energy e; = |p;|>/2m. (See Shankar
p. 500 and the end of this handout for discussion of this plane-wave approximation.)

e In the dipole approximation, we need to calculate the dipole matrix element
ry = (fIR|i) = A/d3r e s/ o= ZIrl/a0
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where A = 7=Y/2(Z/Lag)*/?.
The overlap integral is straightforward to evaluate (see Shankar p. 504):
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Noting that (Z/ag)? + (py/h)? = 2m(e; — &;)/h*, we find
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e Fermi’s Golden Rule gives the scattering rate from [i) to |f) as
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In order to calculate the differential scattering cross-section do/dS), defined by

do  power absorbed by atom while emitting electrons into solid angle df2

)

dQ (incident energy flux of electromagnetic field) x df2

we need to find the density of final states py. If we apply periodic boundary conditions
to the cubic box, then the allowed final states obey
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Thus, the number of allowed states in a momentum-space volume element p?c dpy d€ is
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and the power absorbed by the atom in scattering into solid angle df2 is
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The incident energy flux of the electromagnetic wave is Ji, = uc = (¢/4n) |E(r,t)[?,
or, averaged over one complete cycle, Ji, = (¢/87) | Ey|*. Thus,
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Comment 1: The finite system size does not enter the final result. If one works with an
infinite system, the correct density of final states is ensured through the delta-function
normalization of the plane wave, i.e., (r|p) = (27h) =32 exp(ip - r/h).

Comment 2: Equation (2) agrees, for instance, with that obtained from H;p in
Quantum Theory of Light by R. Loudon (Clarendon Press, Oxford, 1973). On the
other hand, this do/dS) is 4 times greater than that given by Shankar, Merzbacher,
and Sakurai, all of whom use Hj 4.

This discrepancy appears to stem from the fact that the general result
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holds only if i) and |f) are exact eigenstates of the same Hamiltonian. Here, |f) is
only an approximate version of the true final state, which is a plane wave plus an
incoming spherical wave (see Merzbacher p. 502). Since |f) is not a true eigenstate
of the Coulomb Hamiltonian, different formulations of the dipole approximation are
not guaranteed to produce the same result. It turns out that rs; given in Eq. (1) is
twice the correct value. It can be shown [e.g., see Ch. 12 of Intermediate Quantum
Mechanics by H. A. Bethe and R. Jackiw (2nd Edition, W. A. Benjamin, Reading,
Massachussets, 1968)] that using H;p with the exact final state wave functions yields
the result obtained using H;4 with the plane-wave approximate wave functions.

The H,4 formulation does not always yield superior results. It is the H;g version that
gives the correct frequency distribution for photons emitted from finite-lifetime excited
states [W. E. Lamb, Jr., Phys. Rev. 85, 259 (1952).]

These examples show that calculating the effects of radiation on matter is very subtle!



