
PHZ 7427 Spring 2011 – Homework 1

Due by the start of class on Monday, February 7. After that, the assignment may be
submitted for 75% credit until the start of class on Monday, February 14.

Answer all four questions. Please write neatly and include your name on the front page of
your answers. You must also clearly identify all your collaborators on this assignment. To
gain maximum credit you should explain your reasoning and show all working.

1. Standardize the following products of bosonic (a) or fermionic (c) creation and annihila-
tion operators. For the purpose of this question, “standardize” means (i) normal-order
the operators by permuting all creation operators to lie to the left of all annihilation
operators; (ii) permute any creation operators to lie in order of ascending state index
α; (iii) permute any annihilation operators to lie in order of descending α; (iv) rewrite
any product of identical bosonic operators in power form such as (aα)2 or (a†α)5, and
eliminate any product of identical fermionic operators using cαcα = c†αc
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2. Complete the proof outlined on page 6 of the Ch. 1 notes that

[ψσ(r), ψσ′(r′)]± = 0, [ψ†
σ(r), ψ†

σ′(r
′)]± = 0, [ψσ(r), ψ†

σ′(r
′)]± = δ(r − r′)δσ,σ′ ,

where “+” applies to fermions ([A,B]+ being the anticommutator of A and B) and
“−” applies to bosons ([A,B]− being the commutator of A and B).

3. [Based on Fetter and Walecka Problem 4.1 and Phillips Ch. 5 Problem 3.] Consider a
uniform gas of electrons that interact via a screened Coulomb potential

u(r) =
V0

r
e−r/a ⇔ u(q) =

4πV0

q2 + a−2
.

(a) Show that the single-particle wave functions φk(r) = V −1/2eik·r solve the Hartree-
Fock equations in a system of volume V → ∞, and evaluate the direct and
exchange terms in the energy shift ∆εk ≡ ∆εk. Hence, find the Fermi energy εF .

(b) Show that the exchange contribution to εF is negligible compared to the direct
contribution in the weak-screening limit kFa� 1, but that the two contributions
are comparable in the strong-screening regime kFa� 1.
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These masses are defined such that for free electrons, m∗
1 = m∗

2 = m.

Express ∂∆εk/∂k and ∂2∆εk/∂k
2 for the present system as functions of x = k/kF .

Hence, provide expressions for m/m∗
1 and m/m∗

2 for k close to kF in each of the
limits (i) kFa� 1, and (ii) kFa� 1.



4. A quantum-mechanical system is represented by a two-dimensional vector space spanned
by an orthonormal basis |1〉 and |2〉. This system’s Hamiltonian isH = ε(|2〉〈2|−|1〉〈1|),
where ε > 0. We also consider another Hermitian operator Ω, which can be written
Ω = ω0(|1〉〈2| + |2〉〈1|) with ω0 > 0. Let the eigenvalues of Ω be ω1 and ω2 (ω1 < ω2)
corresponding to normalized eigenkets |ω1〉 and |ω2〉.
Consider three initial states of this system, each described by its state operator ρ(t = 0):

(a) ρ(0) = 0.36|1〉〈1| + 0.64|2〉〈2|.
(b) ρ(0) = 0.36|1〉〈1| + 0.64|2〉〈2| − 0.48|1〉〈2| − 0.48|2〉〈1|.
(c) ρ(0) = 0.36|1〉〈1| + 0.64|ω2〉〈ω2|.

For each initial state, perform the following:

i. Determine whether the initial state is pure or mixed. If it is pure, find the
corresponding normalized state vector |ψ〉.

ii. Find the eigenvalues pj and eigenkets |pj〉 of the initial state operator.

iii. Calculate the state operator ρ(t) for an arbitrary time t ≥ 0.

iv. Use ρ(t) to calculate the expectation values of H and Ω at time t ≥ 0.


