
PHZ 7427 Spring 2011 – Homework 2

Due by the start of class on Wednesday, February 23. After that, the assignment may be
submitted for 75% credit until the start of class on Wednesday, March 2.

Answer both questions. Please write neatly and include your name on the front page of your
answers. You must also clearly identify all your collaborators on this assignment. To gain
maximum credit you should explain your reasoning and show all working.

1. The energy-loss function. The standard theory of dielectric screening states that an
external potential φext(q, ω) produces a total potential φ(q, ω) = φext(q, ω)/ε(q, ω) re-
sulting from superposition of φext(q, ω) and an induced potential φind(q, ω) = φ(q, ω)−
φext(q, ω) = [1/ε(q, ω)−1]φext(q, ω). The quantity −Im [1/ε(q, ω)−1] ≡ Im [−1/ε(q, ω)]
is known as the energy-loss function because it determines the dissipation of energy
when a perturbation φext(q, ω) is applied to the system.

(a) The classical theory for an electron gas with relaxation time τ and mean-free-path
` (see, e.g., Ashcroft and Mermin Ch. 1) gives in the limit q` � 1, a dielectric
constant ε(q, ω) = 1−ω2

p/[ω(ω+ i/τ)]. Show that within this theory, the real part
of [1/ε(q, ω) − 1] vanishes at ω = ωp, while Im [−1/ε(q, ω)] versus ω has a sharp
peak centered near the same frequency. What is the approximate width of this
peak in the physical limit ωpτ � 1? This peak represents the strong absorption
of electromagnetic energy through the creation of plasmons.

Linear response theory shows that 1/ε(q, ω)− 1 = (4πe2/q2) χnn(q, ω), where χnn(q, ω)
is the double Fourier transform of the retarded density-density response function.

(b) By introducing a complete, orthonormal basis {|n〉} of exact stationary states
satisfying Heq|n〉 = En|n〉 (as done on p. 15 of the Ch. 2 notes), provide exact
expressions for the real and imaginary parts of 1/ε(q, ω) in the canonical ensemble
at temperature T = (kBβ)−1.

(c) Using the same basis, provide an exact expression for the dynamical structure
factor S(q, ω) as defined on p. 23 of the Ch. 2 notes.

(d) By comparing your results from (b) and (c), verify the validity of the fluctuation
dissipation theorem in the form Im [−1/ε(q, ω)] = (4π2ne2/h̄q2)(1−e−βh̄ω)S(q, ω).

(e) Briefly suggest how your exact expression for Im [−1/ε(q, ω)] could give rise to a
peak of the type that you found in the classical approximation. Do not rely
merely on the presence of Dirac delta functions in your exact expression for
Im [−1/ε(q, ω)] because in the limit V → ∞, the sum over discrete states can
generally be replaced by an integral over all states having energy ε, in which case
Im [−1/ε(q, ω)] becomes a smooth function of ω.

(f) Show, by combining the appropriate symmetry properties of retarded linear re-
sponse functions with the Kramers-Kronig relations (as defined on p. 16 of the
Ch. 2 notes), that
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Assuming that the classical theory gives the correct value of Re [1/ε(q, ω)] at very
large frequencies for any q, use Eq. (1) to derive the f -sum rule∫ ∞
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(Mahan Ch. 5 contains a more complicated derivation of the f-sum rule that does
not rely on any assumption about the large-ω behavior of the dielectric function.)

(g) Assuming that ε(q, ω = 0) diverges as q → 0, as predicted by Thomas-Fermi
theory, derive the sum rule
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Exact sum rules, such as those in (f) and (g) that involve moments of the loss function,
can provide important tests for any approximate theory.

2. Quasiparticle effective mass. This question is designed to lead you through the
derivation of the relation between the effective mass m∗ of a translationally invariant
Fermi liquid and its Landau parameters Fα

l , starting from the expansion
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where ε0
kσ is the energy of the quasiparticle state (k, σ) in the ground state of the

interacting Fermi system, and δnkσ = nkσ − n0
kσ measures the change in the expected

occupancy nkσ from its ground-state value n0
kσ.

(a) Using Eq. (2), write down expressions for the quasiparticle energy εkσ = ∂E/∂nkσ

and for the quasiparticle velocity vkσ = h̄−1∇k εkσ.

(b) Write down (i) the total current Iqp carried by all the quasiparticles in terms of
vkσ, the expected quasiparticle occupancies nkσ, and the quasiparticle charge −e;
and (ii) the total momentum carried by the quasiparticles in terms of k and nkσ.

(c) Since the quasiparticles are in one-to-one correspondence with (and share the
same wave vector and charge quantum numbers as) the true particles, it must be
the case that Iqp = Ip and Pqp = Pp, where Ip and Pp are the total current and
total momentum calculated directly for the particles. Clearly Pp = −(m/e) Ip,
and it therefore follows that Pqp = −(m/e) Iqp. Substitute your expressions for
the quantities on each side of this last equation and then use your answer to (a)
to eliminate vkσ and obtain an equation involving only h̄, e, m, and quantities
appearing in Eq. (2).

(d) Now calculate the change of each side of the equation you obtained in part (c)
arising from an infinitesimal change dnkσ in the occupancy nkσ (and hence in
δnkσ) for one particular state (k, σ).

(e) By considering a case where the state (k, σ) in part (d) lies on the Fermi surface,
derive the relation
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Hint: You may need to use integration by parts.


