
PHZ 7427 Spring 2011 – Homework 3

Due by 5:00 p.m. on Wednesday, March 16. After that, the assignment may be submitted
for 75% credit until the start of class on Monday, March 28.

Answer all questions. Please write neatly and include your name on the front page of your
answers. You must also clearly identify all your collaborators on this assignment. To gain
maximum credit you should explain your reasoning and show all working.

1. Anisotropic Heisenberg ferromagnet (based on Ashcroft and Mermin Problem
33–5). In insulators where the crystal field has lower-than-cubic symmetry, the nearest-
neighbor spin Hamiltonian may take the form
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where Jz and J⊥ are in general not equal.

(a) Show that the state with all Sz
j = S is an eigenstate of the Hamiltonian, whatever

the values of Jz and J⊥.

(b) Derive the magnon energies in linear spin-wave theory.

(c) Consider the case Jz > J⊥ > 0. Show that the magnon spectrum is gapped. (This
does not violate Goldstone’s theorem, since the anisotropic Heisenberg model has
discrete (Sz → −Sz) rather than continuous spin rotation symmetry.) Find the
low-temperature magnetization in d spatial dimensions. Show that the deviation
from saturation remains finite in dimensions d ≥ 2 (in contrast to the situation
discussed in class for Jz = J⊥), and that under these conditions it is exponentially
small in −1/T .

(d) Consider the case J⊥ > Jz > 0. Show that some magnons have negative energies,
which implies that the state from part (a) is not the ground state.

2. Mean-field theory of ferrimagnetism and antiferromagnetism. Ashcroft and
Mermin Problem 33–7.

3. Antiferromagnetic spin-wave theory. This question leads you through the deriva-
tion of the standard linear spin-wave theory for a spin-S nearest-neighbor Heisenberg
antiferromagnet on a bipartite lattice, in which each site in sublattice A has z nearest
neighbors in sublattice B, and vice versa. The spin Hamiltonian for this system is
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where J < 0 and site j in sublattice A has z nearest neighbors j + δ in sublattice B.

(a) The system’s classical ground state (the Néel state) has all spins in A pointing
along ẑ (say), and all spins in B pointing along −ẑ. Therefore, the natural vacuum
state for spin-wave theory has Sz = S in A and Sz = −S in B. However, it proves
convenient to rewrite the problem using the original spin operators Sj for j ∈ A



and rotated spin operators S̃k for k ∈ B, with S̃x
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k .
Verify that the operators S̃k obey the standard spin commutation relations, and
find the relation between S̃±

k and S±
k . Show that the Hamiltonian can be rewritten
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(b) Perform a Holstein-Primakoff transformation on the spins Sj and S̃k in terms of
bosonic operators aj and bk, respectively. Show that the magnon (quadratic) part
of the resulting Hamiltonian can be written
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where γk = z−1
∑

Æ
exp(ik · δ). Here k runs over the first Brillouin zone of the

magnetic lattice, which is smaller than the crystalline Brillouin zone since the real-
space unit volume of each sublattice is twice that of the full lattice. (Interacting
Electrons and Quantum Magnetism by A. Auerbach treats this problem instead
using a single set of bosonic operators bk with k extending over the first Brillouin
zone of the crystal lattice.)

(c) Perform a Bogoliubov transformation

ak = cosh θkαk + sinh θkβ
†
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with the real parameters θk ≡ θ−k chosen to eliminate any “anomalous” terms of
the form α†β† or αβ. Verify that

αk = cosh θkak − sinh θkb
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obey bosonic commutation relations.

(d) Find the dispersion relation ωk of the resulting magnon modes. Show that there
are two spin waves with vanishing ωk, and find the dispersion near the zeros.

(e) The ground state of the antiferromagnet is the state with no α or β bosons.
However, this does not correspond to a state with no a or b bosons. In fact,
the quantum-mechanical ground state contains arbitrary numbers of spins having
|Sz| < S. Show that the ground-state energy predicted by linear spin-wave theory
is lower than that of our originally assumed vacuum state.

(f) The order parameter that assumes a nonzero value in the antiferromagnetic phase
is the staggered magnetization (per unit volume)
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Calculate Ms(T ) in the low-temperature limit, commenting on whether there
seems to be a failure of the spin-wave theory for any particular value(s) of the
spatial dimensionality d.


