## Summary of Complex Derivatives and Contour Integrals

- The derivative of a complex function $f(z)$ is

$$
\begin{equation*}
\frac{d f}{d z}=\lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z} \tag{1}
\end{equation*}
$$

- Let $z=x+i y$, and $f(z)=u(x, y)+i v(x, y)$, where $u$ and $v$ are real-valued. For $d z=d x$, the derivative of $f$ is

$$
\begin{equation*}
\frac{d f}{d z}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial z}=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x} \tag{2}
\end{equation*}
$$

while for $d z=i d y$,

$$
\begin{equation*}
\frac{d f}{d z}=\frac{\partial f}{\partial y} \frac{\partial y}{\partial z}=-i\left(\frac{\partial u}{\partial y}+i \frac{\partial v}{\partial y}\right) \tag{3}
\end{equation*}
$$

These two derivatives are equal if $f(z)$ satisfies the Cauchy-Riemann conditions

$$
\begin{equation*}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \text { and } \quad \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y} \tag{4}
\end{equation*}
$$

Equations (4) imply that $\nabla^{2} u=\nabla^{2} v=0$.

- A complex function $f(z)$ is analytic (or complex differentiable) at $z=z_{0}$ if $d f / d z$ defined by Eq. (1) exists and its value is independent of the direction of $d z$ on the complex plane. It turns out that the second requirement is met if $f(z)$ has continuous partial derivatives and satisfies the Cauchy-Riemann conditions.
- A singularity of a complex function $f(z)$ is a point where $f(z)$ is nonanalytic. If $\left(z-z_{0}\right)^{n} f(z)$ is not analytic for any finite positive integer $n$, then the point $z=z_{0}$ is an essential singularity. The singularity is a pole of order $p$ if $p$ is the smallest positive integer for which $\left(z-z_{0}\right)^{p} f(z)$ is analytic at $z=z_{0}$.
- A complex function $f(z)$ is analytic (or holomorphic) on a region $R$ if it is differentiable at every point in $R$. Such a function is infinitely differentiable at every point in $R$.
- A complex function $f(z)$ is entire if it is analytic at all finite $z$. Examples include all polynomials $\sum_{j=0}^{n} a_{j} z^{j}, \exp (z), \cos (z), \sin (z), A i(z), B i(z), 1 / \Gamma(z)$, and $\operatorname{erf}(z)$.
- A meromorphic function is a complex function of the form $f(z)=g(z) / h(z)$, where $g(z)$ and $h(z)$ are entire and $h(z)$ is not identically zero. Such a function is analytic, except possibly at isolated poles.
- A contour integral is an integral obtained by integration of a complex function along a prescribed path (the contour) in the complex plane. The integral of $f(z)$ around a closed contour $C$ is denoted $\oint_{C} f(z) d z$. By convention, closed contours are traversed in a counter-clockwise direction.
- Cauchy integral theorem: If $f(z)$ is analytic on a simply connected region $R$, then

$$
\begin{equation*}
\oint_{C} f(z) d z=0 \tag{5}
\end{equation*}
$$

for any closed contour $C$ completely contained in $R$. If, instead, $f(z)$ is analytic on a multiply connected region $R$, then

$$
\begin{equation*}
\oint_{C} f(z) d z=\sum_{j} \oint_{C_{j}} f(z) d z \tag{6}
\end{equation*}
$$

where the sum runs over all the nonanalytic regions $R_{j}$ enclosed by contour $C$, and $C_{j}$ is any closed contour completely within $R$ that encloses $R_{j}$.

- Cauchy integral formula: If $f(z)$ is analytic on a simply connected region $R$, then

$$
\begin{equation*}
f\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{C} \frac{f(z) d z}{z-z_{0}} \tag{7}
\end{equation*}
$$

for any closed contour $C$ completely contained in $R$ that encloses the point $z_{0}$. A corollary of Eq. (7) is that

$$
\begin{equation*}
\left.\frac{d^{n} f}{d z^{n}}\right|_{z_{0}}=\frac{n!}{2 \pi i} \oint_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{n+1}} \tag{8}
\end{equation*}
$$

- Laurent series: Suppose that a complex function $f(z)$ is analytic in a region $R$ enclosing but not necessarily including $z=z_{0}$ (e.g., an annulus centered on $z_{0}$ ). Then for any point $z$ in $R$,

$$
\begin{equation*}
f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z_{0}\right)\left(z-z_{0}\right)^{n}, \quad a_{n}\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{n+1}}, \tag{9}
\end{equation*}
$$

where $C$ is a closed contour completely contained in $R$ that encloses the point $z_{0}$. If $f(z)$ is analytic at $z=z_{0}$, then $a_{n}\left(z_{0}\right)=0$ for all $n<0$, and the Laurent series reduces to the Taylor-McLaurin series. If $z_{0}$ is a pole of order $p$, then $a_{-p}\left(z_{0}\right) \neq 0$, but $a_{n}\left(z_{0}\right)=0$ for all $n<-p$.

- Residue theorem: If a complex function $f(z)$ is analytic apart from isolated poles on some region $R$, then for any contour $C$ completely contained in $R$

$$
\begin{equation*}
\oint_{C} f(z) d z=2 \pi i \sum_{j} a_{-1}\left(z_{j}\right), \tag{10}
\end{equation*}
$$

where the sum runs over all poles $z_{j}$ enclosed by the contour. The Laurent series coefficient $a_{-1}\left(z_{j}\right)$ is the residue of $f(z)$ at $z=z_{j}$.

