
PHZ 7428 Fall 2004 – Homework 1

Due by 4:05 p.m. on Friday, October 22.

Answer all questions. Please write neatly and include your name on the front page of your
answers. You must also clearly identify all your collaborators on this assignment. To gain
maximum credit you should explain your reasoning and show all working.

1. Spectral density. A finite system of identical fermions is described by the Hamiltonian

Ĥ =
∑

k

εkc
†
kck +

∑
k,k′

Vk,k′c†kck′ ,

where ck annihilates a particle in single-particle state |φk〉, with 〈φk|φk′〉 = δk,k′ . (The
label k is used to represent all good quantum numbers of the single-particle states.
You should not assume that k is necessarily a wave vector or that |φk〉 is a momentum
eigenket.) This is an example of a quadratic Hamiltonian: each term in Ĥ is the
product of one creation and one annihilation operator. For any such Hamiltonian, there
exists a unitary transformation Û such that the operators dq =

∑
k Uq,kck diagonalize

the Hamiltonian, i.e., Ĥ =
∑

q εqd
†
qdq.

Suppose that this system is in thermal and chemical equilibrium with a reservoir of
temperature T and chemical potential µ. Working in the Lehmann representation, cal-
culate the single-particle spectral density A(k, ω) = −π−1ImGR(k, ω), where GR(k, ω)
is the temporal Fourier transform of

GR(k, t− t′) = −iθ(t− t′)
〈
{ck(t), c†k(t′)}

〉
.

Show that A(k, ω) is independent of temperature. (This is generally not the case for
an interacting system described by a nonquadratic Hamiltonian.)

2. Real-space retarded Green’s functions in three dimensions. The retarded single-particle
Green’s function for free fermions is

G(0)(k, ω + iη) =
1

ω − ωk + iη
,

where ~ωk = ~
2|k|2/2m− µ, and µ ≈ εF = ~

2k2
F/2m at low temperatures.

For a three-dimensional system, it is a standard exercise in contour integration (e.g., see
Merzbacher 3rd edition pp. 291–293, Sakurai revised edition pp. 381–382, or Shankar
2nd edition pp. 541–543) to show that for hω ≥ −εF , the corresponding real-space
Green’s function is

G(0)(r− r′, ω + iη) = − m

h|r− r′| exp

(
i
√
k2

F + 2mω/~ |r− r′|
)
.

You should familiarize yourself with this calculation, because you will have to reproduce
it with suitable modifications in parts (a)–(c) below.
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(a) Find the form of G(0)(r− r′, ω + iη) for ~ω < −εF .

(b) Consider scattering of noninteracting fermions from the zero-range impurity po-
tential Vi(r) = V0a

3δ3(r). Working in the Born limit and ignoring the real-part of
the self-energy, the disorder-averaged retarded Green’s function is

Ḡ(k, ω + iη) =
1

ω − ωk + i/2τ(ω) + iη
,

where ~τ−1(ω) = 2πniV
2
0 a

6N(~ω) ≥ 0. Here ni is the impurity concentration and
N(ε− εF ) is the single-particle density of states per unit volume at energy ε. The
iη in the denominator is needed only when τ−1(ω) = 0.

Show that the real-space version of this Green’s function can be written

Ḡ(r− r′, ω + iη) = − m

h|r− r′| exp(ik+|r− r′|),

where k+ is the location in the upper half of the complex-|k| plane of the pole in
Ḡ(k, ω + iη).

(c) Show that for ~/2τ � εF and ~|ω| � εF ,

Ḡ(r− r′, ω + iη) = G(0)(r− r′, ω + iη)e−|r−r′|/2l(ω),

and provide an expression for the mean free path l(ω).

(d) It is a common approximation to linearize the free-electron dispersion about the
Fermi level, i.e., to set

ωk = vF (|k| − kF ),

where vF = ~kF/m is the Fermi velocity.

Using this approximation, repeat the calculation of Ḡ(r−r′, ω+ iη), and compare
the result with that obtained above using the full dispersion.

3. Real-space Matsubara Green’s functions in one dimension. Consider once again scat-
tering of noninteracting electrons by the zero-range impurity potential from question
2. Ignoring the real-part of the self-energy, the disorder-averaged Matsubara Green’s
function is approximately

Ḡ(k, iωn) =
1

iωn − ωk + i sgnωn/2τ
, (1)

where τ is the scattering time for electrons near the Fermi surface.

(a) Show using contour integration that in one dimension, Eq. (1) implies the real-
space Matsubara Green’s function can be written

Ḡ(x− x′, iωn) = −i m
~k+

exp(ik+|x− x′|),

where k+ is the location in the upper half of the complex-k plane of the pole in
Ḡ(k, iωn).
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(b) In describing one-dimensional systems, it is again common practice to linearize
the free-electron dispersion about the Fermi energy. Since the one-dimensional
“Fermi surface” consists of just two points, we can write

ωk =

{
vF (k − kF ) for k > 0,
vF (−k − kF ) for k < 0.

The Fourier transformation of Ḡ(x − x′, iωn) is simplified if each of the two
branches of the linearized dispersion is extended from a half line (0 < k < ∞
or −∞ < k < 0) to a full line (−∞ < k < ∞). The price for this simplifica-
tion is the creation of unphysical free-electron states extending to arbitrarily large
negative energies.

Use the extended linearized dispersion to calculate Ḡ(x− x′, iωn). Determine the
range of ωn over which this result provides a good approximation to the exact
result described in part (a).

(c) Show that the temporal Fourier transform of your result from (b) yields

Ḡ(x, τ) =
1

πlT
Im {exp(ikFx) cosech [(x+ ivF τ)/lT ]} exp(−|x|/2l), (2)

where lT = ~vF/(πkBT ) is a thermal length (not to be confused with the mean
free path l). Over what range of x and τ do you expect this result to be valid?

(d) Use Eq. (2) to calculate the disorder-averaged electron number density n(x). Do
the impurities affect the number density (on average)?

4. Electron density near an impenetrable barrier. Consider a noninteracting one-dimensional
Fermi gas confined by an impenetrable barrier to the half-line x > 0. For electrons free
to move on the entire line, we can write the field operator

ψ̂(x) =

∫ ∞

−∞
dk eikx ck,

but in the presence of the barrier we must choose one-particle basis functions that
vanish at x = 0, i.e.,

ψ̂half(x) =
√

2

∫ ∞

−∞
dk sin(kx) ck.

(The factor of
√

2 is chosen to ensure that the average number density is the same in
the two sets of basis states.)

(a) Based on the above analysis, show that the unperturbed single-particle Matsubara
Green’s function on the half-line is

G
(0)
half(x, x

′, τ) =
1

2

[
G(0)(x, x′, τ)−G(0)(x,−x′, τ)

−G(0)(−x, x′, τ) +G(0)(−x,−x′, τ)] ,
where G(0)(x, x′, τ) is the corresponding Green’s function on the full line.
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(b) Prove that G(0)(x, x′, τ) = G(0)(|x− x′|, τ), and hence that

G
(0)
half(x, x

′, τ) = G(0)(x− x′, τ)−G(0)(x+ x′, τ). (3)

Note that G
(0)
half(x, x

′, τ) 6= G
(0)
half(x − x′, τ), which should not be surprising given

that the barrier breaks translational invariance.

(c) Combine Eq. (3) with the zero-scattering limit of Eq. (2) to obtain the electron
number density n(x) in the presence of the barrier. You should find that n(x) ex-
hibits Friedel oscillations at wavevector 2kF , modulated by an exponential decay
with increasing distance from the barrier. Analyze separately the behavior in the
limits (i) x→ 0 and (ii) T → 0.

4


