
Problems for :

Selected Topics in Quantum Theory

John R. Klauder

Abstract

A set of problems is offered to accompany the set of lectures with

the above title.

Topic 1: Coherent States

1.1 Let {|n〉}, n = 0, 1, 2, 3, . . ., denote a complete set of orthonormal
vectors in an abstract Hilbert space

�
, with 〈m|n〉 = δmn. Next, let

|χ〉 =
√

1 − |χ|2 |0〉 + χ|1〉 ,
for all complex χ, 0 ≤ |χ| ≤ 1, denote a family of two-dimensional vectors.

a) If χ→ χ′ in the sense of complex numbers, show that |χ〉 → |χ′〉 as
vectors, namely that

‖|χ〉 − |χ′〉‖ → 0 ,

where ‖|ψ〉‖ :=
√

〈ψ|ψ〉. This exercise shows continuity of the labeling of
the vectors.

b) Find a weight function ρ(|χ|) ≥ 0 such that
∫

0≤|χ|≤1

|χ〉〈χ| ρ(|χ|) dχrdχi = |0〉〈0|+ |1〉〈1| = I2 ,

where χ = χr + iχi, and I2 is the two-dimensional identity. This problem
is an example of how a resolution of unity may be given as a positive (and
continuous) superposition of one-dimensional projection operators.
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With properties a) and b) established, i.e., continuity of labeling and the
existence of a continuous resolution of unity, then one can assert that the set
of states {|χ〉} constitutes a set of coherent states.

c) Let N be an operator such that N |n〉 = n|n〉 for all n. Evaluate

〈χ|N |χ〉 .

It is useful sometimes to set N = a†a, where a† and a denote creation
and annihilation operators, respectively. In particular, we may choose these
operators to have the commutation relation given by

[a, a†] = aa† − a†a = 1 .

Note any algebraic pattern in N = a†a that also appears in 〈χ|N |χ〉.
This similarity between q-numbers and c-numbers lends itself to the in-

terpretation of the diagonal coherent state matrix elements of an operator as
being closely related to the classical variable. This association is an elemen-
tary example of the so-called weak correspondence principle that identifies
the diagonal coherent state matrix elements of a quantum generator with
the classical version of the same generator. Of course, this association leads
to an � -augmented classical expression since we have not as yet taken the
limit in which � → 0.

d) With {bmn}2
m,n=1 a set of 4 complex constants, let

B = b00 |0〉〈0| + b01 |0〉〈1| + b10 |1〉〈0|+ b11 |1〉〈1|

denote the most general 2 × 2 operator (matrix). Determine

B(χ, χ′) ≡ 〈χ|B|χ′〉 ,

and show that given only the diagonal matrix elements B(χ) ≡ B(χ, χ), the
value of the general matrix elements B(χ, χ′) can be determined.

* * *

This example illustrates how a limited set of coherent state expectation
values of an operator determines the general operator matrix elements, i.e.,
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determines the operator itself uniquely. This favorable property holds for a
large variety of coherent states, but not for all sets of coherent states.

e) Consider the set of operators of the form, |m〉〈n| , for all m,n,
0 ≤ m,n ≤ 1. Find expressions cm,n(χ) such that

|m〉〈n| =

∫

cm,n(χ) |χ〉〈χ| dχr dχi .

This example illustrates the “diagonal” representation of operators, namely,
the representation of any operator as a superposition over coherent state pro-
jection operators.

f) Determine whether or not the set {cm,n(χ)} is unique. Argue that
any nonuniqueness arises because the present example is limited to a finite
dimensional Hilbert space.

1.2 Consider the three-dimensional vectors

|ψ〉 = M(|ψ|, b) [|0〉+ ψ |1〉 + bψ2 |2〉] ,

for all ψ ∈ � , where b is a fixed, real parameter, and M(|ψ|, b) denotes a
normalization factor such that ‖|ψ〉‖2 ≡ 〈ψ|ψ〉 = 1 for all |ψ〉.

a) Find the range of allowed b values and an associated weight function
σ(|ψ|, b) ≥ 0 such that

∫

|ψ〉〈ψ| σ(|ψ|, b) dψr dψi = |0〉〈0| + |1〉〈1|+ |2〉〈2| = I3 ,

the three-dimensional identity.

b) As an optional extension of this problem, one may add analogues of
the additional questions from Exercise 1.1 for this set of three-dimensional
coherent states. Specification of which extension is left to the instructor.

1.3 The canonical coherent states are defined by

|z〉 ≡ e−|z|2/2
∞

∑

n=0

zn

√
n!

|n〉 .
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For this canonical set of coherent states, verify the several properties sug-
gested in Exercise 1.1, namely, answer analogues of all questions a) through
f).

1.4 Consider the set of canonical coherent states introduced in Exercise
1.3 along with N , defined previously by the relation N |n〉 = n|n〉, for all n.

a) Show that

e−iNt |z〉 = |e−itz〉 .

If the operator N denotes the Hamiltonian (in suitable units), then it
follows that this example shows that

e−iNt |z〉 = |z(t)〉 ,

namely that the time evolution of any coherent state is again a coherent
state, a property which is referred to as temporal stability. Observe, that the
more general statement

e−iNt |z〉 = |z, t〉

holds for any operatorN and set of coherent states; temporal stability |z, t〉 =
|z(t)〉 is a significant restriction that applies only in special cases.

b) Alternative sets of coherent states may be defined by

|z, r〉 = M(|z|, r)
∞

∑

n=0

zn

√
ρn

|n〉 ,

where M(|z|, r) denotes a normalization factor; in particular,

M(|z|, r)−2 =

∞
∑

n=0

|z|2n

ρn

for all u = |z|2 < U = lim inf n→∞ ρn, where U , U ≤ ∞, denotes the radius
of convergence for the series. Finally, we require that

ρn =

∫ U

0

unr(u) du
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for some weight function r(u) ≥ 0, normalized so that ρ0 = 1. With ρn

defined as moments of a normalized distribution, show that

ρ1 ≤ ρ
1/2
2 ≤ ρ

1/3
3 ≤ · · · ρ1/n

n ≤ · · · .

c) As a consequence, show that

inf limn→∞ρn = lim
n→∞

ρn .

d) In terms of the quantities defined above, find a weight function
K(|z|, r) ≥ 0 such that

∫

|z, r〉〈z, r|K(|z|, r) dxdy =
∞

∑

n=0

|n〉〈n| = I∞ ≡ I ,

where z = x + iy. In particular, show that if r(u) = e−u, then the usual
canonical coherent states emerge.

e) For the general coherent states |z, r〉 defined above, determine the
form of the

i) the symplectic potential

dΩ := i〈z, r|d|z, r〉

ii) the induced metric

dσ2 := 2[‖d|z, r〉‖2 − |〈z, r|d|z, r〉|2 ] ,

and

iii) the scalar curvature associated with the given metric, all expressed as
functions of the variables introduced above,.

* * *

This exercise shows that the set of coherent states {|z, r〉} induces a
metric dσ2 — and thereby a Riemannian geometry — on the set � of complex
numbers.
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1.5 A bounded operator B is called positive, i.e., 0 < B, if 0 <
〈ψ|B|ψ〉 for all nonzero |ψ〉 ∈ �

. For two positive operators B1 and B2,
we write B1 < B2 provided B2 − B1 is a positive operator. Let An be an
increasing sequence of positive operators such that 0 < A1 < · · · < An · · · <
I. Assume that the limn→∞〈φ| (An − I) |ψ〉 = 0 holds for all |ψ〉, |φ〉 ∈ �

(called weak convergence). In that case, show that

lim
n→∞

‖ (An − I)|ψ〉‖ = 0

holds for all |ψ〉 ∈ �
(called strong convergence).

The lesson of this example applies to the resolution of unity that coherent
states enjoy. Let {|l〉}, l ∈ L, a label space, denote a set of coherent states,
and let δl denote a positively weighted absolutely continuous volume element
on L such that

∫

|l〉〈l| δl = I ,

the identity on the (separable) Hilbert space in question. The question arises
what kind of convergence is meant by this integral. Such an integral is called
weakly convergent provided that for all |φ〉 and |ψ〉 in

�
, it follows that

∫

〈φ|l〉〈l|ψ〉 δl = 〈φ|ψ〉 .

In fact it is sufficient to show this relation holds when |φ〉 = |ψ〉, i.e., in the
case that

∫

|〈l|ψ〉|2 δl = 〈ψ|ψ〉 = ‖|ψ〉‖2 .

This is the essential meaning for the resolution of identity, so one often sees
the (correct) statement that the integral defining the resolution of unity
converges weakly. However, more can be said. Consider the set of integrals
given by

An :=

∫

Rn

|l〉〈l| δl ,
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where Rn denotes a set of increasing (Rn ⊂ Rn+1) domains of integration
that limit as n → ∞ to the whole set L. It is clear in this case that such
operators obey the condition stated above, namely

0 < A1 · · · < An < · · · < I .

Hence, we can conclude that the integral defining the resolution of unity
converges strongly.

1.6 In an abstract sense, there is only one (separable) Hilbert space;
however, there is a limitless number of different representations of this sin-
gle abstract Hilbert space. Several examples will illustrate the point. The
Hilbert space composed of square integrable functions on the real line, ψ(x) ∈
L2( � ), with inner product determined by

(ψ, φ) =

∫

ψ∗(x)φ(x) dx

is the most commonly used representation in Schrödinger wave mechanics.
However, this representation is unitarily equivalent to all other representa-
tions such as one based on a sequence space. In particular, let {hn(x)}∞n=0

denote a set of orthonormal functions (e.g., the Hermite functions) which
enjoy the relations

∞
∑

n=0

hn(x)hn(y) = δ(x− y) ,

∫

hm(x)hn(x) dx = δmn

characteristic of an orthonormal sequence of functions. This set of functions
leads to an alternative representation since we can introduce

an =

∫

hn(x)ψ(x) dx .

ψ(x) =

∞
∑

n=0

anhn(x) ,

along with the corresponding inner product
∫

ψ∗(x)φ(x) dx =
∞

∑

n=0

a∗nbn ,
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φ(l) ≡
∞

∑

m=1

bm 〈l|l′m〉 = 〈l|φ〉 ,

and as the inner product of these two elements we adopt the rule

(ψ, φ) ≡
N,M
∑

n,m=1

a∗nbm 〈ln|l′m〉 = 〈ψ|φ〉 .

Completion of the space leads to a reproducing kernel Hilbert space all of
whose elements are continuous functions; every ingredient of this space is
determined by the reproducing kernel 〈l|l′〉 which is a continuous function on
L × L.

If, in addition, the set of states {|l〉} form a set of coherent states, then
there is an additional and alternative procedure to form the inner product
between two elements, namely,

(ψ, φ) =

∫

ψ(l)∗φ(l) δl ,

for a suitable absolutely continuous measure δl on L. In that case 〈l|l′〉 still
plays the role of a reproducing kernel.

One can “reduce” a reproducing kernel to form a new function that can
also serve as reproducing kernels for an associated Hilbert space composed
of continuous functions. For example, one can fix certain elements of l, or
perform weighted integrals over the same elements in l and l′, etc. Such
procedures lead to new, reduced reproducing kernels that can be used to
generate associated reproducing kernel Hilbert spaces. Such techniques are
very useful to pass from one Hilbert space to another Hilbert space, as we
illustrate in the following Exercise.

Let

|p, q〉 = e−iqP eipQ |0〉

denote a set of coherent states, and focus on the overlap function

〈p, q|p′, q′〉 .

a) Consider the three different reduced reproducing kernels given by
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i) 〈〈q|q′〉〉 ≡ 〈0, q|0, q′〉,
ii) 〈〈q|q′〉〉 ≡ 〈7, q|7, q′〉,
iii) 〈〈q|q′〉〉 ≡

∫

〈p, q|p′, q′〉e−p2−p′2

dpdp′,

and determine the dimensionality of the associated reproducing kernel Hilbert
space in each case.

b) Some reproducing kernel Hilbert spaces admit alternative local in-
tegral representations to define the inner product – such is the case when the
set {|l〉} forms a set of coherent states. Show that the function

〈q|q′〉 = e−(q−q′)2

defines a reproducing kernel that cannot have a local integral representation
for the associated inner product.

Topic 2: Path Integrals

2.1 The free particle as well as the harmonic oscillator involve quadratic
Lagrangians as well as quadratic Hamiltonians when expressed in traditional
coordinates. As a consequence, a lattice version of path integrals associated
with either of these problems involves the integral of a multi-dimensional
Gaussian integral. Let x = {xn}N

n=1 denote an N -dimensional real-valued
vector, and {Gm,n}N,N

m,n=1 a symmetric, N ×N positive-definite matrix. Con-
sider the integral

IN(s) :=

∫

exp[iΣmsmxm − 1
2
Σm,nxmGm,nxn ] Πmdxm .

Here s := {sn}N
n=1 denotes a fixed, real vector.

a) Evaluate the integral IN(s) as a function of the various variables.

Now consider the multi-dimensional integral

JN(s) :=

∫

exp[iΣmsmxm + i 1
2
Σm,nxmHm,nxn ] Πmdxm ,
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where we have added a factor of −i before the quadratic term in the exponent,
and relaxed the elements of the matrix {Hm,n} such that it is symmetric, has
a nonvanishing determinant, but no longer need be positive definite. Define
this integral by adding a small additional damping term, e.g.,

Hm,n → Hm,n + iεδm,n , 0 < ε � 1 .

The proper definition of JN(s) is given by evaluation of the integral with a
positive ε followed by a limit ε→ 0 after the integral has been taken.

b) Evaluate the integral JN(s).

2.2 The result of the multi-dimensional integral dealt with in Exercise
2.1 consisted of an expression that logically divides into an amplitude factor
and an exponent. The proper exponent can be obtained in a more convenient
fashion as follows. As a Gaussian integral, the same exponent arises if one
extremizes the exponent in the integrand.

a) Show that the resultant exponent is given by simply extremizing
the exponent in the integrand.

The amplitude factor can also be determined in terms of a second-order
partial derivative of the exponent determined in part a).

b) Find the appropriate second-order partial derivative expression of
the exponent that determines the amplitude factor.

2.3 Use the results of Exercises 2.1 and 2.2 to evaluate:

a) The propagator for the harmonic oscillator of angular frequency ω
as a path integral of the form

〈x′′, T |x′, 0〉 = N
∫

ei
1
2

∫ T

0
[ẋ2 − ω2x2] dtDx ,

where one integrates over “all paths” subject to the boundary conditions
that x(T ) = x′′ and x(0) = x′. The resultant expression corresponds to the
matrix element

〈x′′|e−iHT |x′〉 ,
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where H = 1
2
[P 2 + ω2Q2].

The former path integral is a configuration-space path integral, which is
to be contrasted with a phase-space path integral that we consider next.

b) Evaluate the propagator for the harmonic oscillator of angular fre-
quency ω as a phase-space path integral of the form

〈q′′, T |q′, 0〉 = M
∫

ei
∫

T

0
[pq̇−

1
2
(p2+ω2q2) ] dt DpDq ,

where one integrates over “all paths” such that q(T ) = q ′′ and q(0) = q′, and
in addition one integrates over all p-paths without any boundary conditions
on those paths. Compare the results obtained in part b) with those obtained
in part a).

c) Take the limit ω → 0 in either of the expressions in part a) or b),
and thereby determine the propagator for the free particle of unit mass.

2.4 Let x(t), t ≥ 0, denote a standard Brownian motion stochastic

variable, namely, a random-function variable that satisfies the following four
properties:

i) 〈x(t)〉 = 0

ii) 〈x(t)x(s)〉 = min(t, s)

iii) x(0) = 0

iv) x(t) is a Gaussian random variable where the angle brackets 〈 〉
denote ensemble average, i.e., an average over all Brownian motion paths.

a) Evaluate 〈[x(t) − x(s)]2 〉

b) Using hypothesis iv) above, evaluate

〈ei � u(t)x(t) dt 〉

where u(t) denotes a smooth function of time and the integral runs over
0 ≤ t <∞.
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The result of this stochastic average may also be described by an impor-
tant Gaussian measure, the Wiener measure µW , implicitly defined by

〈ei � u(t)x(t) dt 〉 :=

∫

ei � u(t)b(t) dt dµW (b) ,

where b(t) denotes a functional realization of the paths that make up the
stochastic variable x(t). It follows that stochastic averages over random
paths are equivalent to averages in the probability distribution afforded by
the Wiener measure; stated otherwise, it follows that

〈(·)〉 =

∫

(·) dµW

for any expression (·).

c) Based on the result of b), evaluate

〈 exp{−[x(t) − x(s)]2/|t− s|β} 〉 .

d) Use the result of c) to show that

|x(t) − x(s)|2 ≤ C |t− s|1+ε , 0 ≤ t, s ≤ 1 , ε > 0 ,

for some random variable C, with probability one, and that

|x(t) − x(s)|2 ≤ C ′ |t− s|1−ε , 0 ≤ t, s ≤ 1 , ε > 0 ,

for some random variable C ′, with probability zero.

* * *

The result of this exercise establishes that Brownian motion paths – or
equivalently, a Weiner measure – is concentrated on paths that are continuous
but for which the time derivative is undefined (i.e., infinite) for almost all
time. The continuity and nondifferentiablity of Brownian motion paths are
important and characteristic features of such paths.
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Topic 3: Quantum Constraints

3.1 Consider the classical system described by the classical action

I =

∫

[pq̇ − λp] dt ,

where p and q are the dynamical variables, the Hamiltonian vanishes, and
the Lagrange multiplier λ enforces the single constraint p = 0.

a) Discuss the solution to this classical system and find which vari-
ables are gauge independent (do not depend on the choice of the Lagrange
multiplier λ), and which variables are gauge dependent (do depend on the
Lagrange multiplier λ).

In discussing the quantization of this system, let us first introduce canon-
ical coherent states

|p, q〉 = e−iqP eipQ |0〉 ,

where the fiducial vector is conveniently chosen as the solution to the equation
(Q + iP )|0〉 = 0. The overlap function of two such coherent states is given
by

〈p′′, q′′|p′, q′〉 = π−1/2

∫ ∞

−∞

e−(k−p′′)2/2+ik(q′′−q′)−(k−p′)2/2 dk

= ei
1
2
(p′′ + p′)(q′′ − q′) − 1

4
[(p′′ − p′)2 + (q′′ − q′)2] .

We now describe the projection operator method to deal with quantum
constraints. For a set of quantum constraints {Φα}A

α=1 the projection opera-
tor of interest is chosen as

IE = IE(ΣA
α=1Φ

2
α ≤ δ( � )2) .

For the problem of present interest, we define the projection operator IE as

IE = IE(P 2 ≤ δ2) = IE(−δ < P < δ) .

14



The reduced reproducing kernel for this example is then

〈p′′, q′′|IE|p′, q′〉 = π−1/2

∫ δ

−δ

e−(k−p′′)2/2+ik(q′′−q′)−(k−p′)2/2 dk

=
sin((q′′ − q′)δ)

π1/2(q′′ − q′)
e−(p′′2+p′2)/2 +O(δ2) ,

valid for small δ, 0 < δ � 1. In order to avoid a vanishing limit as δ → 0,
we rescale this expression and consider

〈〈p′′, q′′|p′, q′〉〉 ≡ lim
δ→0

〈p′′, q′′|IE|p′, q′〉
〈0|IE|0〉 ,

which leads to

〈〈p′′, q′′|p′, q′〉〉 = e−(p′′2+p′2)/2 .

The meaning of this expression is the following: As a product of a function
of p′′ and a function of p′, this expression, when used as a reproducing kernel,
leads to a one-dimensional physical Hilbert space.

Note well that the reduced reproducing kernel does not depend on either
q′′ or q′; this is a clear signal that, as far as the coherent state labels are
concerned, in the physical Hilbert space we have reached a state where the
coefficient of these missing variables is zero, i.e., “P = 0”, as desired.

An observable operator O is one that commutes with the projection op-
erator, i.e., [O, IE] = 0. One can select the observable part of any operator G,
even one that may fail to commute with IE, simply by declaring the observ-
able part of G to be GE ≡ IEGIE.

b) For the problem at hand, determine the observable part of Q,
namely, compute QE = IEQIE.

If φ1 = 0 and φ2 = 0 denote two constraints, such constraints are called
irreducible if they are not redundant. In other words, if φ1 = 0 does not

imply φ2 = 0, or vice versa. On the other hand, a pair of constraints is
called reducible if the vanishing of one of them already implies the vanishing
of the other constraint. These notions may be generalized to any number of
constraints.
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c) As an example, consider the simple system with two constraints
given by

I =

∫

[pq̇ − λ1p− λ2p] dt ,

which describes a classical system with two reducible – indeed identical –
constraints. Describe (i) the classical theory for this system. Then find (ii)
the reduced reproducing kernel that characterizes the physical Hilbert space.
Compare the results for the classical and quantum theories for this case with
the irreducible case described in the introduction to this problem.

d) As a modification of this example, consider the system described by

I =

∫

[pq̇ − λ1p− λ2p− λ3p] dt ,

which corresponds to a system with vanishing Hamiltonian and three iden-
tical constraints. Again, describe the classical and quantum theories and
compare your results with those of the preceding example and the one in the
introduction to this problem.

* * *

The lesson of this example, is that the projection operator method easily
handles reducible constraints and yields the same results as that obtained
from an irreducible set of constraints.

3.2 In the classical theory, a constraint φ(p, q) is called regular whenever
φ(p, q) = 0, and also that both of the equations

∂φ

∂p
6= 0 ,

∂φ

∂q
6= 0

are everywhere valid on the constraint hypersurface. On the other hand, a
constraint φ(p, q) is called irregular whenever φ(p, q) = 0, but for which

∂φ

∂p
= 0 , and/or

∂φ

∂q
= 0
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on the constraint hypersurface. Consider the following problem:

A classical system is defined by the action functional

I =

∫

[pq̇ − λp3] dt .

Again we have no Hamiltonian and a single – but irregular – constraint
p3 = 0.

a) Study the solution of the classical system. Find the gauge inde-
pendent variables and the gauge dependent variables. Compare these results
with those of Exercise 3.1 a.

b) Study the quantum theory of this system. In particular, introduce
coherent states and a projection operator IE appropriate to the present con-
straint. Evaluate the expression

lim
δ→0

〈p′′, q′′|IE|p′, q′〉
〈0|IE|0〉 ,

and compare the results with those of Exercise 3.1 b. Determine that the
reduced reproducing kernel that arises for the present irregular constraint
example generates the same physical Hilbert space as was found in the case
of a regular version of the same constraint.

c) Repeat part a) and part b) above in the case that the classical
system is characterized by the classical action

I =

∫

[pq̇ − λpβ] dt ,

for any choice of real β such that β > 1, and which leads to an irregular
constraint.

* * *

The purpose of this exercise is to show that the projection operator
method works just as easily for irregular constraints as it does for regular
constraints.
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and thus k = 2m + 1. If c is chosen as an odd positive integer, then we can
arrange that k = c for some choice of m. Thus, while the constraints are
generally irreducible, there is indeed a nonzero subspace in which they act
reducibly.

a) Discuss the classical system described above.

b) Discuss the quantization of this example, and derive a suitable re-
producing kernel that characterizes the physical Hilbert space.

* * *

The several exercises in this section have focussed on examples that in-
volve reducible and/or irregular constraints. It is noteworthy that the pro-
jection operator method is well suited to handle all these examples, and
moreover, no other commonly used quantization procedure can readily han-
dle reducible and irregular constraints involving both first and second class
constraints. As the last example illustrates, it is quite possible that reducible
constraints may enter in unexpected ways, and thus it is noteworthy that at
least one quantization procedure is capable of successfully treating such sys-
tems.

In order to test other methods, proponents of alternative procedures of
quantization of constrained systems are encouraged to try their method on
the exercises given in this section.
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