Homework 2

$15+8$ (bonus) = 23 points

Problem 1 (4 points)

Find how thick a target of liquid Hydrogen should be to give 50-50 chances for scattering:

- 10 GeV protons (energy typical for cosmic rays)-2 points
- 10 MeV neutrinos (\sim the highest energy solar neutrino) - 2 points (express the answer in light years)

The total cross-section of pp scattering is $\sigma_{\mathrm{pp}} \sim 40 \mathrm{mb}$ in a very wide range of energies. The total crosssection of $v p$ interaction is $\sigma_{v p} \sim 10^{-40} \mathrm{~cm}^{2}$ for neutrinos with about 10 MeV energy.

Problem 2 (2 points)

The matrix element of weak interactions can be well approximated by a constant in a wide range of energies. How should the weak interaction cross section for process $v+n \rightarrow e^{-}+p$ depend on neutrino energy E in the lab frame where the proton target is at rest?

Problem 3 (2 points)

Typical width of excited states of proton and neutron is $\Gamma \sim 100 \mathrm{MeV}$.
What lifetime does it correspond to? (1 point)
How far can light travel during this time? Compare the answer with the proton radius of 1 fm . (1 point)

Problem 4 (3 points)

Imagine a particle X decaying into three different di-lepton channels with the following branching ratios:
$\mathrm{BR}\left(\mathrm{X} \rightarrow e^{+} e^{-}\right)=0.01$
$\mathrm{BR}\left(\mathrm{X} \rightarrow \mu^{+} \mu^{-}\right)=0.09$
$\mathrm{BR}\left(\mathrm{X} \rightarrow \tau^{+} \tau^{-}\right)=0.90$
An experiment detects many events with X-particle decays. One graduate student looks at a distribution of invariant masses of two muons in the $\mu^{+} \mu^{-}$-decay channel and finds that the distribution has a peak that she can fit with the following formula (A is some constant and mass m is in GeV):

$$
d N / d m=\frac{A}{(m-100)^{2}+9}
$$

What is the lifetime of the X particle (express the answer in seconds)? (1 point)
Another student studies a distribution of invariant masses of two electrons. What is your prediction for the shape and normalization of this distribution? (2 points)

Problem 5 (4 points)

Non-relativistic protons with an initial momentum p scatter elastically off a gold thin-film target in particular direction (θ, φ) within a range of stereo angles $\mathrm{d} \Omega$ with a cross section d σ. The cross section is dominated by interactions with the gold nuclei and the role of electrons can be neglected. Now consider a scattering of α-particles of the same initial momentum in the same stereo-angle angle direction and range. An α-particle is a nucleus of helium and has twice the charge and four times the mass of a proton. In both cases, one can assume that the gold nuclei, being so heavy, are stationary.

First, by what factor are the matrix elements $m_{f i}$ for the two scatterings different? (2 points) Second, taking into account all other factors, what is the α-particle cross section in terms of the proton cross section do? (2 points)

Problem 9 (8 bonus points)

Assume that protons are infinitely heavy. As you learned, if protons were positive point-like charges, the matrix element and cross section for elastic scattering of electrons on protons would be:

$$
m_{0}(q)=\frac{e^{2}}{q^{2}} \quad \text { and } \quad \frac{d \sigma_{0}}{d \Omega}=\frac{1}{4 \pi^{2}} \frac{e^{4}}{q^{4}} \frac{p^{2}}{v^{2}}
$$

Find how these expressions would get modified, if protons were not point-like and had the spatial charge distributed in space as follows:

$$
\rho(r)=A e^{-r / r_{0}}
$$

Looking at the factors modifying the scattering cross section and assuming that $r_{0} \sim 1 \mathrm{fm}$, argue how large electron energy must be to allow one detecting the proton structure, if one could measure cross sections with $\delta \sim 10 \%$ precision.

Hints:

1) The normalization constant A must be such that the proton charge integrated over volume would be equal to e. Find this constant-2 points.
2) Calculate potential $V(r)$ due to the charge distribution $\rho(r)-2$ points
3) Calculate matrix element $M(q)$ for electron scattering off the potential $V(r) — 2$ points
4) Define at what q the difference in cross sections would become larger that $\delta \sim 10 \%$. At what minimum electron energy such q would be possible?-2 points

Note: These kind of deviation in electron scattering cross sections were seen in 1950s, which allowed to directly measure the proton size for the first time.

