
Introduction to Elementary Particle Physics.                                  Note 04  Page 1 of 8 
 

All you need to know about QM for this course 
 
 

Ψ(q) 
 
State of particles is described by a complex contiguous wave function Ψ(q) of some coordinates q. Coordinates q 
could be (t,x) or (E,p), but not both, plus some other coordinates (e.g., particle’s spin projection).  
 
 
dP=|Ψ(q)|2dq 
 
dP=|Ψ(q)|2dq represents probability (or can be just proportional to probability, depending on the choice of 
normalization) of finding particle with coordinates q in interval dq (assuming that q is contiguous variable, like 
coordinate x or momentum p). Note: Ψ(q) is not uniquely defined, i.e. Ψ’(q)=Ψ(q)eiα leads to the same probabilities. 
 
 
Ψ(q)= αΨ1(q)+ βΨ2(q) 
 
If Ψ1(q) describes some physical state 1 and Ψ2(q) describes a physical state 2,Ψ(q)= αΨ1(q)+ βΨ2(q) describes a 
new physical state of superposition of the two states 1 and 2.  
 
 
Ψ(q1, q2)= Ψ1(q1)Ψ2(q2) 
 
If Ψ1(q1) describes a particle 1, Ψ2(q2) describes a particle 2, and these particles do not interact, then their common 
wave function Ψ(q1, q2)= Ψ1(q1)Ψ2(q2) 
 

 
 
 
 

Wave Function Evolution. Measurement. 
 
The notion of an experiment (observation) is the key in the conventional (Copenhagen) interpretation of QM: only 
by conducting an experiment one can localize a particle with probabilities calculated according to Ψ(q)—see point 
2. Before an experiment is conducted, the particle is at neither coordinate (i.e., one should not associate the wave 
function with some physical smeared distribution of matter). The quantitative role of QM is to give deterministic 
description of the evolution of Ψ(q), rather than in deterministic predictions for the outcome of experiments. In 
general, QM can give only probabilistic predictions for the experiment outcome.  Equation describing time evolution 
of Ψ can often be written as  

ˆ ˆ,  where  is some operator acting on function .i H H
t
∂
∂

Ψ = Ψ Ψ  

 
 
It was shown that the QM probabilistic description could not be reduced to some deterministic, but hidden 
parameters.  
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Observable variable and Operator. Eigenstates. 
 
1. Any measured physical parameter g can be associated with some linear operator ĝ, such that, if one knows the 

particle wave function Ψ(q), the average measured value⎯g can be calculated according to the integral: 
 

; vector d transposeand conjugated is   where,ˆ ΨΨΨΨ= ++∫ dqgg  
 

 while the spectrum of allowed g-values is found from the following (in general, differential) equation: 
�g gΨ Ψ= . 

 
2. This equation may lead to a contiguous or discrete set of solutions of gm and Ψm .  
 
        == Discrete solutions usually results from “bounding” conditions, like: 

a. constraining a particle to be in a potential box of size a    discrete energy levels 1~ n
a

 

b. requirement that Ψ(ϕ+2π)=Ψ(ϕ)  discrete values for angular momentum: 0, ±1, ±2, …  
 
 

 == States Ψm and Ψn for which gm≠gn are orthogonal: 
 

0=ΨΨ∫ + dqmn
 

 
If there are a few wave functions with a common gk , then any linear combination of them is also a 
solution. And one can always mix such functions in such a way that their linear combinations also 
become orthogonal to each other.  

 
 

 
A few operators for function Ψ(t,x) 
 
a) coordinates: � , � , �x x y y z= = =          z  

b) momenta: ˆ ˆ ˆ,     ,     x y zp i p i p i
x y z
∂ ∂ ∂
∂ ∂ ∂

= − = − = −  

c) full energy (Hamiltonian): Ĥ i
t
∂
∂

=  (i.e., it is Hamiltonian that drives the wave function evolution). 

d) kinetic energy (non-relativistic!): 
2 2 2 2

2 2 2

ˆˆ
2
pE
m x y z

∂ ∂ ∂
∂ ∂ ∂

⎛ ⎞
= = − + +⎜ ⎟

⎝ ⎠
 

e) potential energy: � ( , , )V V x y z=  
f) angular momentum:  2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ,    ,    ,    z y x x z y y x z x y zl xp yp l yp zp l zp xp l l l l= − = − = − = + +  

or in polar coordinates (R,θ,ϕ): 
2

2
2 2

1 1ˆ ˆ   and   sin
sin sinzl i l∂ ∂ ∂ ∂θ

∂ϕ θ ∂ϕ θ ∂θ ∂θ
⎡ ⎤⎛ ⎞= − = − + ⎜ ⎟⎢ ⎥

⎝ ⎠⎣ ⎦
 

 
Note that coordinate operators (a) follow from the definition of Ψ(t,x). Operators (b), (c), (f) can be derived by 
considering invariance of physics laws under translations in space (b), time (c), and angular rotations (f). Operators 
(f) also can be easily obtained by substituting QM momentum operators for momenta in the classical mechanics 
equations for angular momentum. Operators for kinetic and potential energies can also be obtained the same way. 
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In-class exercises: 
 

• Show how a energy/momentum quantization arises for a particle constrained to be between two walls. 
 
• Show how the angular momentum quantization arises from requiring continuity of wave function in ϕ.  

 
• Show that extra finite-size extra dimensions lead to an apparent (as perceived by an observer in 3D-space) 

infinite series of particles with the same properties, but larger and larger masses. Consider “compactified” 
(circular) or “thin-sheet-like” extra dimensions.  
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Wave function normalization 
 
1. Any general state of a particle can be represented as a linear combination of eigenstates. It is very instructive to 
revoke a geometrical analogy of a general unit vector being expressed in terms of base unit vectors. 

 
 

For a set of discrete eigenstates: 
 

2 2

( ) ( )   where

| |  would define a probability of being in state m, all probabilities adding up to 1: | | 1
m m

m m m

q c q

P c c

Ψ = Ψ

= =
∑

∑
 

 
 
For a set of contiguous eigentstates 
 

2

2

( ) ( ) ( )d    where

| ( ) | d   defines a probability for a particle to have  in an interval d , 

the integral probability over all states being equal to 1:  | ( ) | d 1

q c q

dP c

c

νν ν

ν ν ν ν

ν ν

Ψ = Ψ

=

=

∫

∫

 

 
 

 
2. Condition of wave function orthogonality and the total probability normalizations can be combined in one 

equation as follows: 
 

states spectrum contiguousfor   )(

and states, spectrum discretefor   

ννδ

δ

−′=ΨΨ

=ΨΨ

∫
∫

+
′

+

dq

dq

vv

mnmn  

 
 

The former conditions are obvious. Normalization of contiguous spectrum wave functions on the δ-function insures 
interpretation of c(ν) coefficients as given above. Indeed, 

( )

νν

ννννννδ

νννν

νννν

ν

νν

dc

ddcc

ddccdqqq

dqcdcqdqdqqqP

vv

vv

∫
∫∫
∫∫ ∫

∫∫ ∫∫

Δ

+

++
′

Δ

+∞

∞− ′Δ

++
′

+∞

∞−

+

′′⋅−′=

=′′⋅ΨΨ=

=Ψ⋅′′Ψ=ΨΨ=Δ

2|)(|=   

= )()()(   

)()()()(   

)()()()()()(
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Simultaneously measurable variables 
 
Note that eigenstates for operators �g  and �f  do not necessarily coincide. In this case, we say that values g and f 
cannot be simultaneously and precisely determined. For two physical parameters to be simultaneously defined, their 
operators should be commutative, i.e. 

� � � � , � , � ] � � � �g f f g g f g f f g
def

⋅ = ⋅ = ⋅ − ⋅ =     or [   0  
 
 
 
Uncertainty principle 
 
Note that operators of x and px do not commutate: ˆ ˆ ˆ[ , ]x x xx p xp p x i= − = . Therefore, they cannot be precisely 
known at the same time. This leads to the famous Heisenberg’s uncertainty principle (1927): 

 
~ 1xx pΔ ⋅Δ  

This has a number of implications: 
a particle constrained in space within dx, will have uncertainty in momentum of dp~1/dx 
a particle scattered so that its momentum changes by dp can resolve smallest spatial structures of dx~1/dp 
 
 

There is a similarly-looking equation for ~ 1t EΔ ⋅Δ , which, for example, implies that  
 a particle of mass M can pop up into existence for a short time dt~1/M  
 a particle with lifetime of τ would have its mass “spread” over dM range, where dM~1/τ  

 
 
 
 

More examples 
 
What can and cannot be measured simultaneously (check commutator): 
• YES:  x, y, z coordinates 
• YES:  all momentum components (px, py, and pz

 ) and the kinetic energy 
• NO:  x and px 
• NO:  time and full energy 
• YES:  x, py, and pz  
• NO:  Lx and Ly or any other pair ( [Lx,Ly]=iLz ) 
• YES:  Lz and L2 (and similarly for x- and y-components) 
• YES:  Lz and pz  (and similarly for x- and y-components) 
• NO:  Lz and px or Lz and py  
• YES:  Lz and z  (and similarly for x- and y-components) 
• YES: L2, S2, J2, and Jz, where vector J is a full angular moment J=L+S 
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Hamiltonian Eigenstates 
 
Note that Hamiltonian plays the dual role: it drives the wave function evolution and is the operator of the full energy 
�H EΨ Ψ= . For an enclosed system Hamiltonian cannot depend on time and it obviously commutates with itself. 

Therefore, the latter equation should have a set of stationary solutions Ψm with conserved energy values of Em. 
Combining the two equations, one can easily obtain the explicit form of time dependence of Ψm functions: 

ˆ ˆ    and     ,

from where:   ,    

which has factorized solutions: ( , , , ) ( , , ).

Then, any arbitrary state can be written as: ( , , , )   ( , , ).

m

m

m m m m m

m m m

iE t
m m

iE t
m m

m

H E i H
t

i E
t

t x y z e x y z

t x y z c e x y z

∂
∂

∂
∂

ψ

ψ

−

−

Ψ = Ψ Ψ = Ψ

Ψ = Ψ

Ψ =

Ψ =∑

 

 
 
 

Momentum Eigenstates 
 
1. Eigenstates for momentum operator can be found from the corresponding differential equation: 
 

ˆ ( , , ) ( , , )

( , , ) ( , , )

which has solutions: ( , , ) ( , ).

Generalizing for other coordinates: ( )

x

x

x y z

x x

x

ip x
p

ip x p y p z ipr
p

p x y z p x y z

i x y z p x y z
x

x y z e y z

r Ce Ce

ψ ψ
∂ ψ ψ
∂

ψ χ

ψ + +

=

− =

=

= =
GG

G
G

 

Normalization1 on the δ-function )( ppdxdydzpp −′=ΨΨ∫ +
′ δ  results in 3/ 21 (2 )C π= .  

 
2. Combining points 19 and 20 gives a wave function of a free particle: 

( )
( )

3/ 2
1(E,p)= 

2
i Et pre

π
− −Ψ

GGG  

 
3. A general wave function can be, thus, presented as a superposition of momentum eigenstates: 

3 3 3
3/ 2

1( ) ( ) ( ) ( ) ,     where .
(2 )

Therefore, ( ) and ( ) are Fourier transformations of each other.

ipr
p x y zr c p r d p c p e d p d p dp dp dp

r c p

ψ ψ
π

ψ

= = =∫ ∫
GG

G
G G G G

G G
 

 
4. For a free particle in a very large, but fixed size volume V, the wave functions ( )=C i Et pre− −Ψ

GG
 can be normalized 

with C =
1
V

.  In this case the integrated probability of finding the particle in the full volume V equals to one: 

1|| 2 =Ψ∫ dV   

 
 

                                                 
1 ∫

∞

∞

=
+

-

)(2 :property  theuse should one Here απδα dxe xi  
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Angular Momentum Eigenstates 
 
1. Solutions for the operator of lz can be easily found in polar coordinates: 

� , ( , , ) ( , , ),

( , , ) ( , ).

l l i R m R

R e f R

z z

im

Ψ Ψ Ψ Ψ

Ψ

= − =

=

     or  

which has solutions:  

∂
∂ϕ

θ ϕ θ ϕ

θ ϕ θϕ

 

From a natural boundary condition of Ψ(ϕ+2π)=Ψ(ϕ), one can see that lz can be equal only to integer numbers. 
 
 

2. Since l2 and lz operator commutate, there should be solutions with definite l2 and lz, or, for short, l and m. These 
solutions can be written in factorized form (p-functions are not normalized):  

Ψ( , , ) ( ) ( ) ,
( )
( ) cos , ( ) sin
( ) cos , ( ) cos sin , ( ) sin
...

R f R p e
p
p p
p p p
etc

l
m imθ ϕ θ

θ

θ θ θ θ

θ θ θ θ θ θ θ

ϕ=

=

= =

= − = =

±

± ±

where 

  
    

0
0

1
0

1
1

2
0 2

2
1

2
2 2

1

3 1
∓

∓

 

For fixed l, there are 2l+1 possible lz-projections from l to l and Δ lz =1. 
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Spin 
 
Symmetry of equations with respect to rotations allows introducing a plain internal angular momentum S (called 
spin) even for point particles without requiring anything physically spinning inside. Commutation rules for angular 
momentum projection operators (that can be derived from symmetry principles alone) drive the fact that Δ lz or Δ Sz 
must be an integral number. So the total number of projections for particles with spin S is 2S+1: -S, -S+1, -S+2, …, 
-1, 0, 1, 2, …, S-1, S, where spin S can take values of only 0, ½, 1, 3/2, 2, etc. 
 
Spin-½ particle z-projection eigenstates can be presented as:     

)(
1
0

       )( 
0
1

xx downup χϕ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Ψ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=Ψ   

And a general wave function and its conjugated state become: 

( )1 † * *
1 2

2

( )
( )     and   ( ) ( ),  ( )

( )
q

q q q q
q

χ
χ χ

χ
⎛ ⎞

Ψ = Ψ =⎜ ⎟
⎝ ⎠

 

 
Spin operators are matrices. For spin-½ particles, the operators are: 

    1 0 0 1 01 1 1ˆ ˆ ˆ                
0 1 1 0 02 2 2z x y

i
S S S

i
−⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

 
 
Fermions and Bosons 
 
1. It was shown that indistinguishable particles with half-integral spins should obey Fermi-Dirac statistics, i.e. 

their wave functions should be anti-symmetrical under permutations of any pair of such particles: 
 (1 ↔ 2)       Ψ(q1, q2)= -Ψ(q2, q1).   

Such particles are called fermions. 
 

Similarly, indistinguishable particles with integral spins should obey Bose-Einstein statistics, i.e. their wave 
functions should be symmetrical under swapping any pair of such particles: 

(1 ↔ 2)       Ψ(q1, q2)= Ψ(q2, q1).  
Such particles are called bosons. 
 

2. Two important fermion properties: 
i. It is easy to show that no two fermions can be in the same states. From the opposite, let’s assume that there 

are two fermions with exactly the same wave functions Ψ0. The combined wave function of two particles is 
ΨA=Ψ1(q1)Ψ2(q2) =Ψ0(q1)Ψ0(q2). After switching two fermions, the new function is ΨB=Ψ0(q2)Ψ0(q1). The 
two functions are required to be different by sign; however, they are clearly identical. This can be true only 
if Ψ0=0. 

ii. A composite particle made of even number of fermions must be a boson, and a composite particle made of 
odd number of fermions must be a fermion. Indeed, let’s put two identical composite particles next two 
each other and assume that the number of fermions in each of them is N. Switching one pair of fermions 
between two composite particles, changes sign of the wave function. After switching all N pairs, we 
effectively switched the two composite particles, and the new wave function sign is (-1)N. If N is even, the 
overall sign has not changed and, therefore, the composite particles must have been bosons.  

 
3. Two important boson properties: 

i. There is no limit on the number of boson that can take exactly the same states. 
ii. A composite particle made of bosons must be a boson.  

 
 

 
 


