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Perturbation theory: rate of transitions and scattering amplitude 
 
 

1. The unperturbed Hamiltonian H0 has solutions:  
nmmnn

tiE
n dVre n δψψψ =Ψ ∫ +−      where),(= 00   

and the system’s initial state is Ψi
0 . 

 
 
2. Then, a small perturbation in the form of potential energy V(r) is added the free Hamiltonian: H=H0+V. 

Under this perturbation, the wave function will start evolving according to ( )Ψ+=Ψ VH
t

i ˆˆ
0∂

∂ .  

 
3. We will be looking for solutions of this equation in the form 

0 0( ) ( ) ,     
where  describes the spectrum of states, ( ) amplitudes are small and (0) 0
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Ψ = Ψ + Ψ
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∑  

 
 
4. By substituting Ψ in eq.(2) with eq.(3): 

 

( ) ( )( )0 0 0 0
0

0

ˆ ˆ( ) ( )i n n i n n

i

i c t H V c t
t

i

∂
Ψ + Ψ = + Ψ + Ψ

∂

Ψ

∑ ∑
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0
ˆ

iH= Ψ 0 0
0

ˆ ˆ( )i n nV c t H+ Ψ + Ψ∑ 0ˆ( )n nc t V+ Ψ∑
0

0

0 0

   

ˆSingle lines cancel identity terms (all  are solutions for hamiltonian ).
Crossed term is the second order of smalleness, while other two kept terms are of the first order...
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ltiplying both sides by  and integrating over dV=dxdydz, we arrive to:
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5. By substituting wave functions as given in the point 1: 

 
( ) ( ) ( )0 0 0 0ˆ ˆ( ) f i f i f ii E E t i E E t i E E t

f f i f i fic t i e V dV ie V dV ie Vψ ψ ψ ψ− − −+ += − = − = −∫ ∫  
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6. After some calculus manipulations which I skip here, the rate of transitions (probability per unit of time) 

from the initial i-state to one of the dn states in vicinity of the picked final state Ψf is 
 

22 | | ( )fi f idw V E E dnπ δ= − ,  
 

• The final eigenstates are contiguous functions of direction parameters and energy. Therefore, the 
probability of scattering into exactly one particular final state is obviously zero. So we need to 
open some range in the vicinity of parameters characterizing the picked final state, dΩ and dE. 
There will be dn final states in that range, which we will calculate further. 

 
• Appearance of delta-function δ(Ef-Ei) signals us that the energy must be conserved.           

The number of states dn can be re-written as 
  
 

2 2

                 where  ( , , )  is called a density of states f f f
f f f f

d n d ndn d dE E
d dE d dE

ρ θ ϕ= Ω =
Ω Ω

  

  
 The presence of the δ-function allows us to sum up (integrate) over all possible final energies, 
 giving us the rate of transitions in the following form: 
 
 2

22 | |fi f
f f

d ndw V d
d dE

π= Ω
Ω

 

 
• Vfi is called a scattering amplitude, or matrix element. In a typical scattering experiment, the 

incident and scattered particles can be represented by free waves. Therefore, the matrix element 
can be thought of as a simple Fourier transformation of the potential function V(r): 
 

)()()()(ˆ 2)(2200 qVdVerVCdVerVCdVerVeCdVVV fi
rqirppirpirpi

iffi
fiif ===== ∫∫∫∫ −−+

ψψ . 
  

Note that the matrix element depends on the transferred momentum q. 
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Density of states 
 
 
1. I will drop subscript f for now. The density of states can be re-written as:  

2 2 2 1 ,     where  is a final velocity of a particle

1                                                         holds true for non-relativistic and relativistic kinematics

d n d n dp d n v
d dE d dp dE d dp v

dp
dE v

= ⋅ = ⋅
Ω Ω Ω

=

 

 
 

2. I will now assume that the scattering experiment is carried out in the universe of cubic shape with a side L 
so that (x,y,z)-coordinates are constrained to be within –L/2 < x, y, z < L/2, where L can be very large (as 
we will see, this parameters cancels out in the final expressions). 

 
3. Boundary conditions Ψ(-L/2)=Ψ(L/2)=0, lead to wave functions in the sine and cosine forms: 

ψ = ± −e eip x ip xx x with allowed momenta px=(π/L)nx, py=(π/L)ny , pz=(π/L)nz, where n’s are integral numbers. 
 

4. Therefore, the number of possible states within dpx equals to dnx=dpx/(π/L)= dpx(L/π), where interval dpx 
should be considered only along positive px (negative values are not independent with the chosen boundary 
conditions). This condition can be removed by taking only a half dn’s per each dpx-range; i.e., we will 
redefine dnx=dpx(L/2π) and allow px be negative. 

 
5. The total number of states in a cube d3p=dpxdpydpz is, therefore,  

 

( ) ( )

3
3 3

3 32 2 2 2 2x y z
L L L L Vdn dp dp dp d p d p
π π π π π

⎛ ⎞⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

 

 
6. The cubic d3p element in volume in the momentum space can be redefined via absolute value of p and its 

stereo-angle dΩ: d3p=p2dpdΩ, which leads to  
 

( ) ( )
3 2

3 32 2
V Vdn d p p d dp
π π

= = Ω   

 
7. From where:  
  

 
( ) ( )

2 2 2 2

3 3
1    and     

2 2
d n Vp d n Vp

d dp d dE vπ π
= =

Ω Ω
 

 
 
 

Final expression for transition rate 
 
Normalization constants for the incident and scattered particle wave functions are C

V
=

1  so that the 

probability to find a particle inside the cube is equals one. 
 
Therefore, the final expressions for the transition rate (probability per unit of time) can be written as follows: 
 

2 2 2
2

2 3 2

| |1 12 | | ,
(2 ) 4

where   ( ) ( )

f f fi
fi

f f

iqr
fi

p p mVdw m d d
V v V v

m q V r e dV

π
π π

⎛ ⎞⎛ ⎞= Ω = Ω⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

= ∫
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Cross section: relating theory to experiment 
 
1. To relate the experimental definition of cross section to the theory of scattering/transition, we will equalize 

the rates of scattering (experimental point of view, defined via a phenomenological cross section) to the 
rate of transitions (defined via a corresponding matrix element). 

 

2. Experimentally, scattered
dJ d j N
d
σ⎛ ⎞= Ω ⋅ ⋅⎜ ⎟Ω⎝ ⎠

 

 
3. We will now assume that the whole world has volume V. Furthermore, there is only a single target particle 

in that volume V and that the beam consists of a single particle. Therefore, the flux of incident particles in 
formula is j=nvi=(1/V)vi. Also, Jscattered would mean in this case just a probability of scattering per unit of 
time, or dw. Putting all together, the experimental rate in such thought experiment is then 

 
ivd ddw d j N d

d V d
σ σ

= Ω⋅ ⋅ = Ω
Ω Ω

 

 
4. By combining the experimental  rate with the rate obtained in the first-order perturbation approximation: 
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5. From where we obtain the expression allowing us to calculate cross sections once we know the amplitude 

of scattering, or scattering matrix element mfi: 
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6. The expression is correct for non-relativistic and relativistic kinematics. In the case of relativistic 

kinematics for the process A(qi) + B(-qi)  C(qf) + D(-qf), all kinematical variables are to be defined in the 
center of mass frame. 

 
7. If the outgoing particles have spins and all their projections are equally allowed, the number of possible 

final states is increased by the product of the number of possible spin projections for particles C and D: 
 

dVerVqmss
vv
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d
d rqi

fiDC
fi
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Ω
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2π
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• The only factor related to the nature of the force acting between two particles sits in  
 the Matrix Element mfi.  
 
• All other factors affecting the value of the cross section are purely kinematical, and  
 are called Phase Space 

 
 
                    Cross Section  ~  |Matrix Element|2  ×  (Phase Space) 

 
 
 
 



Introduction to Elementary Particle Physics.                                  Note 06  Page 5 of 5 
 
 

Multiple contributions 
 

If there are more than just one potential contributing to the scattering process, e.g. there are two different forces 
acting between two particles described by two functions of potential energies VA(r) and VB(r), then  
 
V(r) = VA(r) + VB(r)   
 
This will result in a combined matrix being a plain sum of two contributions, i.e.  
 

( ) ( ) { }*2 2 22 * *

and

A B
fi fi fi

A B A B A B A B A B A B
fi fi fi fi fi fi fi fi fi fi fi fi fi

m m m

m m m m m m m m m m m m m

= +

= + = + + = + + ⋅ + ⋅

 

 
This means that the total cross section is NOT a sum of two individual cross sections calculated individually for the 
two forces. The last contribution is known as an interference term. 

 
 
 


