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Particle lifetime, decay width, branching ratios…  
 
1. Consider a particle P of mass M being at rest (E=M, p=0). Its wave function Ψ0 is:  
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2. The decay products, free particles appearing as a result of the decay of the original particle, can be 

described by a set of wave functions 
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Note that the total energy En does not have to be exactly equal to the original particle’s mass M.  Since the 
original particle exists only for some finite time Δt~τ from the moment it was given to us (t=0) and due to 
the time-energy analog of the uncertainty principle, the final energy En is allowed to be different from the 
mass M by ΔE~1/τ. 
 
 

3. Then, the overall final wave function at time t is 
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Such defined ci(t) insures the exponential decay of the original particle: 2 /
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4. Let us assume that the particle P decays happen due to some potential V that can be treated as a small 
perturbation to the free Hamiltonian.  In this case, we can repeat all the argumentation of the perturbation 
theory of scattering, just paying attention to the effects of the redefined cn(t). This would now result in: 
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5. Unlike the case of scatterings, we can trivially integrate this function and find the value of c(t). We will set 

observation time to be t=∞ and the initial time t0=0. Integration of the above equation in these limits is 
trivial and gives: 
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6. Therefore, probability of transition from the initial state to the dn interval of states in the vicinity of some 

final f-state is: 
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7. First of all, unlike the case of scatterings, this expression does not contain a delta-function that would 
require that the initial energy M (mass of the decaying particle) and the final energy Ef (total energy of 
decay products) equal to each other.  Or, by running the time back, what used to be a decay is now a 
creation of a particle, and the creation is possible even if the initial energy Ei is not exactly equal to M. 

 
All this is possible because the particle lives only a finite time. As long as the total initial (t=-∞ ) energy Ei 

of particles resulting to a creation of particle P and the final energy of decay products Ef at t=+∞  equal to 
each other, the quantum mechanics seem to allow for a short-term energy non-conservation, i.e.    

 
M ≠ Ef  and, consequently,  Ei ≠ M, which means that the particle P could exist with a mass somewhat 
different from its nominal mass M. Of course, if Γ<<M, the probability for a large deviation would be very 
small. 

 
 
8. Second, although we do not find a delta-function δ(Ef-M) in the expression for the probability, it is still can 

be integrated over all possible Ef energies. If Γ<<M, then the probability dies out very quickly outside of 
E=M and one can assume that Vf0 and dn/dEf=ρf(Ef) do not change too much within a few Γ-range. In such 
approximation, one can evaluate |Vf0| and ρf(Ef) at Ef=M and the integral becomes: 
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9. By recalling the definitions of a branching ratio and partial width Γf , Pf  =Γf /Γ, one can rewrite: 
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• This is how theorists calculate partial widths if they know how to calculate a matrix element 
responsible for the decay (as we will see, decays and scatterings look very much alike).  

 
• Note that, in addition to the matrix element-squared, the partial widths also depend on the phase 

space of the decay products. This, for example, explains why particles decaying via the same 
interaction mechanism may live very different lifetimes. E.g., lifetimes of nuclei undergoing β-
decays and those of heavy quarks/leptons (all due to weak interactions with the matrix element 
well approximated as a constant) range from billions of years of tiny fractions of a second. 

 
• To calculate the total width and, consequently particle’s lifetime, a theorist would calculate partial 

widths to all possible decay channels (at least to those that are believed to give the largest 
contribution). If the observed lifetime is shorter (the total width is broader) than predicted, one can 
tell that there are other open decay channels that have not been accounted in a theory (this method 
was successfully used to show that there only 3 light neutrinos in nature and, consequently, only 3 
lepton-quark generations). 

 
• Also, if a theorist can calculate relative branching ratios of any two channels and experimentally 

the ratio is different (e.g., much larger than expected), it may mean that there other unaccounted 
forces that give contributions to the matrix element. This is a very popular method for indirect 
searches for the new physics.  
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Resonant cross-section (Breit-Wigner formula) 
 
 
 

 
 

 
 
 
 
 
 
Consider a process of two particles in state Ψi merging into an intermediate state/particle Ψ0 that eventually decays 
into some final state Ψf.  The energy of the collision in the center of mass frame is E (as was discussed above, it is 
not necessarily the same as the mass M of the intermediate particle) 
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Combining both together, ( )
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This can be easily solved by multiplying both sides of the equation by 2
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So amount of resonance states present at any given time is 
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From 

f
dN N
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= −Γ  for the decaying intermediate particles to the final state f, the rate at which the final state f  

appears to be produced is  
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And therefore, if the energy of collision E is scanned, the cross section would show a characteristic bump   
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• This is how many new particles were discovered (Δ-resonance, J/ψ, etc.). Note if the resonance width 

Γ is small, one needs to scan with the energy E with very small steps not to miss the bump 
 

• Note that the shape of the distribution (defined by its peak parameter M and the total width Γ) does not 
depend on a particular channel of decay f, but the distribution’s amplitude (i.e. cross section) does. 
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