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1. Introductory remarks 
 
 
To describe an event, one must/may need to know: 
 

1. time when the event occurred: 
→ detectors with fast response on passage of a particle 

 
2. direction of particles 

→ charged particles: measure the ionization track left behind 
→ neutral particles: measure center of gravity of a electromagnetic/hadronic shower 
 

3. momentum or energy or velocity of particles 
→ momentum of charged particles from track curvature in magnetic field 
→ energy from the electromagnetic or hadron shower size 
→ velocity from time of flight (TOF), from dE/dx~1/v2, from Cherenkov light angle cosθc=1/(nv) 
→ energy-momentum from the energy-momentum conservation laws 
 

4. identification of particles 
→ use specifics of interactions (dE/dx for charged particles, em showers for γ/e, no showers for μ, …) 
→ evaluate mass from (p vs v) 
→ secondary decays within the detector volume (reconstruct an explicitly secondary vertex) 

 
5. spin  

→ momentum conservation laws 
→ angular distributions (statistical method based on analysis of many events) 

 
 
 
 
 
Primary detector performance parameters 

• Time resolution, δt 
• Spatial resolution, δx 
• Energy resolution, δE 
• Detection efficiency, ε 
• Probability of misidentification, δ 
• Two-particle spatial resolution, Δx 
• Two-particle time resolution or rate capabilities, Δt or Rate 

 
Derived detector performance parameters 

• Momentum resolution is usually driven by δx and the strength of magnetic field) 
• Velocity errors, depending on a method used, would be driven by δt for TOF, by δE for dE/dx 

energy losses measurement,  δx for Cherenkov angle θc evaluation 
 

Other important considerations 
• Cost 
• Lifetime 
• Stability in time 
• … 
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2. Fast response detectors (timing) 
 
 
Scintillator and Photo-Multiplying tube (PMT)  

Scintillator as we already know 
transform ionization and 
excitation energy losses to light 
this light can be gathered and 
delivered to the photomultiplier 
window, to photocathode. A 
photomultiplier tube, useful for 
light detection of very weak 
signals, is a photoemissive 
device in which the absorption 
of a photon results in the 
emission of an electron. These 
detectors work by amplifying the 
electrons generated by a 
photocathode exposed to a 
photon flux. 

In such a way we can measure 
time when particle gone through the scintillator. Time resolution in these detectors can be as good as 50 - 
200 psec. With rate limitations about 10 MHz. 
 
 
Resistive Plate Chambers 
 
Other detectors for time measurements are Resistive Plate Chambers. These detectors can also be very 
fast with time resolution about 50 psec. Rate limitations for these type of detectors are about 10 Hz/cm2 in a 
spark mode or about 1 kHz/cm2 in an avalanche mode. 
 
RPC consist of a gas volume bounded by two parallel plates. The plates are made of resistive material, with 
electrodes covering the outer surfaces. By applying a high voltage to these electrodes, a strong electric field 
is generated across the gas volume. Through-going charged particles create clusters of positive ions and 
electrons in the gas. If the electric field is sufficiently strong, these electrons avalanche as they move 
towards the anode. This avalanche induces a signal on the external electrodes. At higher values of the 
electric field, the avalanche grows large enough to initiate a streamer; in this case the high resistivity of the 
plates keeps this discharge localized. 
 
 
 



Introduction to Elementary Particle Physics.                  Note 11  Page 4 of 20 
 
3. 1  Tracking Detectors:  Cloud Chambers 

 
 

Wilson Chamber (Cloud Chamber) is the earliest tracking detector. In 
over-saturated vapor, primary ionization clusters left behind a charged 
particle will become centers of condensation. Droplets will follow the track 
of a particle, their number per unit of length being proportional to the density 
of ionization (dE/dx). Condition of over-saturation can be achieved by a fast 
expansion of the chamber volume, which, in its turn, can be triggered by an 
external particle detector. A picture of droplets is then taken and chamber is 
compressed again.  
 
Used from the beginning of the 20th century till mid-1950s. 

• moderate spatial resolution (mm to sub-mm?) 
• p from curvature in magnetic field 
• v from dE/dx 
• slow 
• moderate volume 

 
Charles Thomson Rees Wilson shared the Nobel Prize of 1927 for his method of charged particles 
detection. 
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3.2  Tracking Detectors:  Emulsions 
 
 
Emulsions films consist from crystals of AgBr and AgCl suspended in a body of gel. 
An ionizing particle passing through the emulsion breaks up these molecules. After 
developing the film, the released metallic Silver grains are locked to the main body of 
the emulsions while the remnant part is wahed away. With the help of a microscope, 
these grains, usually of about a half micron diameter, can be observed as black dots. 
F. Powell from Bristol is credited for developing this method of detecting tracks of 
charged particles. 
 
Emulsions have been used as tracking devices since mid-1940s and are still in use. 
 

• Exceptional (not surpassed by any other detector) spatial resolution: 0.2 μm 
• v from density of grains (dE/dx) 
• p can be estimated from the scale of multiple scattering 
• analysis is painstaking 
• small volumes 
• records everything (no trigger possible); in contemporary applications, the external tracking 

information may be used to point to the area of interest and microscope scanning 
 
In 1950 F. Powell received the Nobel Prize for his development of the photographic method of studying 
nuclear processes and his discoveries regarding mesons made with this method.  
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3.3  Tracking Detectors:  Bubble Chambers 
 
 
Bubble chamber is a container with pressured liquid (e.g., 
liquid hydrogen at 5 atm) close to, but below the boiling point. 
Charged particles going through the chamber leave behind 
cluster of ionization. If the pressure is dropped for a short 
time, the boiling temperature drops and the liquid becomes 
overheated.  Boiling is about to begin, bubbles are formed on 
ionization clusters and start growing. In xxx ms, when bubbles 
are about 1 mm in size, pictures from different angles are 
taken and pressure is restored. The increased pressure brings 
the liquid back below the point of boiling and all bubbles 
collapse. Multiple pictures take from different directions allow 
for unambiguous 3D reconstruction. This technique was 
invented by Donald Glaser from Berkeley in 1952 and was 
extensively used in particle physics from mid-1950s for more 
than 25 years. 
 

• good spatial resolution: 100 μm 
• v from density of grains (dE/dx) 
• p from bending in magnetic field 
• large sensitive volumes (good for neutrino physics) 
• slow, practically no trigger capabilities 
• analysis is painstaking 

 
In 1960 D. Glaser received the Nobel Prize for the invention of the bubble chamber. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Picture above to the right is from the Stanford 1 m hydrogen bubble chamber, exposed to 9 GeV antiprotons. 
A careful study of this photograph reveals the reaction to be 

 
•   slow proton is identified by its heavier ionization 
•   K0 subsequently decays into a pair of charged pions 
• ⎯n annihilates with a proton a short distance downstream, to produce three charged particles  
•   π0 decays into two photons, which (unusually for a hydrogen chamber) both convert into e+e- pairs 
•   external particle detectors were used to identify K- 
 



Introduction to Elementary Particle Physics.                  Note 11  Page 7 of 20 
 
3.4  Tracking Detectors:  Wire Chambers 
 
Proportional Counter, invented by Rutherford in early 1900s, is a tube (e.g., 1 cm in diameter) with a 
thin wire (typically, 20-100 μm in diameter) stretched along its axis. A positive high voltage potential is 
applied to the wire.  A charged particle going through the tube leaves about 100 ionization electron per cm. 
These will drift toward the positively charged wire and result in a weak current in the external electric 
circuit. However, the signal would be too weak for detection even with contemporary electronics. 
Rutherford reasoned that if the applied voltage is large, the electric field near, but at some distance away 
from the wire may become strong enough to accelerate electrons drifting towards the wire to energies 
sufficient for producing secondary ionization, which will result in an avalanche-like process of electron 
number multiplication. The total charge collected on the wire (Q) can be easily G=105 times the initial 
ionization left behind by a charged particle (q). The factor G is commonly called gas gain. Note that the 
total charge, which is now large and can be easily detected/measured, is proportional to the initial 
ionization, from where the name proportional counter is derived.  
 
If one increases high voltage further in attempt to reach even larger gas gains, the avalanche development 
process may transit into  
- a plain spark or  
- a Geiger-Muller discharge propagating along the entire length of the wire or  
- a streamer discharge, which would be still well localized in the place of the original avalanche.   
Amount of quenching gas, usually comprised of complex organic molecules, defines which of these three 
regimes will actually happen.  
 
 
Multi-wire proportional chamber (MWPC) 
The basic structure of a simple MWPC is shown in the right. Planes of such detectors has proved to be 
indispensable in high energy physics. Many innovative ways of MWPC construction and obtaining spatial 
track coordinates are due to G. Charpak (Nobel Prize in 1992 for his inventions and development of 
particle detectors, in particular the multiwire proportional chamber). 
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Planar 1D MWPCs:   
 
→ x from Yes/No wire readout 
 

- ~1 mm spatial resolution: (wire pitch)/√12  
- response within ~100 ns 
- cheap electronics 
 
 

Planar 2D MWPCs:  
 
→ x from Yes/No wire readout 
 
→ z along the wires from 
     1) charge division between L/R ends of a wire (wires need to be resistive): ~1% of wire length 
     2) time difference between signals on L/R ends of a wire: ~0.1 ps  ~3 cm 
     3) sampling of an induced charge on cathode wires/strips and calculating center of gravity: ~30-100 μm 
 
     - first two have true 2D readout (no combinatorial combinations, or ghosts, in case of many tracks   
     - resolution along z for all three is mostly limited by precision of electronics 
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Drift chambers (planar and cylindrical): 
 
Track distance from a hit wire is evaluated from the time difference Δt between a fast trigger and actual 
time of a signal appearing on a wire: 
-  the delay is due to electrons drift with v~50 μm/ns almost independent of electric field strength 
-  r = v⋅Δt, resolution δr~50-200 μm 
- δr is driven by primary ionization statistics, diffusion of ionization in gases, path fluctuation and 
electronics. 
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TPC (Time Projection Chamber) 
 
Variation of a drift chamber where drift distances can be as large as meters. Almost the whole volume of 
such detectors is wireless—all wires and cathode pads are on the TPC endplates. 

 true 2D readout (no ghosts) 
 good only when rate of events is not too large (e+e- colliders, nucleus-nucleus colliders) 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Au+Au event at RHIC Collider at Brookhaven 
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3.5  Tracking:  Si detectors 
 
Operational principles of this kind of detectors are similar to gaseous detectors with electron-hole pairs 
being produced as a result of ionization losses.  
 
Large density of electrons (a few thousand times larger than in gases) and small average energy needed for 
ionization (~3 eV vs ~30 eV in gases) allows one to obtain a rather large and easily detectable signals in 
thin (~300 μm) substrates from plain ionization—no additional multiplication mechanisms (like gas gain on 
thin wires) are needed… 
 
Electrons/holes are usually collected by electrodes segmented in either narrow strips (being as narrow as 
20-100 μm, often called micro-strips) or small pixels of similar size. 
 
Detectors are: 
- intrinsically fast: a) thin and b) fast drift of both electrons and holes,  
- precise: e.g., ~5 μm from center of gravity method on signals shared between 50 μm wide strips 
- have good two-track resolution (due to small strip/pixel size). 
 
These features make them ideal of vertex tracking…  
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3.6  Measuring momentum of charged particles  
 
Due to the Lorenz force, a charged particle moves along 
a circle trajectory. The radius of the circle depends on 
particle’s momentum perpendicular to the magnetic field 
and magnetic field strength: 

pR
eB
⊥= ,  

where e=0.3 if p is in GeV, B is in Tesla, and R is in 
meters. 
 
Assuming that we have three measurements per track 
(end points and the middle point), one would measure a 
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A finite spatial resolutions of the three measurements (σx, assuming it is the same for the three 
measurements) will result in sagitta measurement error, 3 / 2S xσ σ= .  

From the last two equations: 2 2
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Note the resolution becomes worse with momentum and improves as 1/BL2. 
 
 
 
 
 
 
 
Multiple scattering due to presence of material inside the tracker (gas, wires, or even iron slabs as in the 
case of muon detectors), will result in wiggling of the track and consequently to mis-measurements of the 
curvature. This will obviously spoil momentum measurements: 

013.6 /
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Note it is momentum independent (!) and improved only as 1/BL. 
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4  Calorimeters 
 
→ Measure particle’s energy by completely absorbing them 
→ Measure particle’s coordinates across calorimeter surface 
→ Play an important role in identification of particles: e vs. μ vs. (charged hadron) 
 
1. e/γ: electromagnetic cascade is measured in a dedicated relatively fine segmented Electromagnetic 

Colorimeter (ECAL) 
2. π/K/p: hadronic cascade is measured in much bulkier Hadron Calorimeter (HCAL) 
3. Jets of hadrons often produced in high energy collisions: Hadron Calorimeter 
 
→ Allow one to measure neutral particles (not visible in detectors based on dE/dx) 
→ Resolution improves with particle energy (opposite to p-measurements that become worse with energy) 
→ Size needed to absorb a particle almost does not change with energy (grows ~logarithmically) 
→ Often have fast and have good time resolution 
 
Two kinds: homogeneous and sampling 
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4.1  Electromagnetic calorimeters 
 
→ particle type: e and γ 
→ electromagnetic shower  
→ T, total length of all charged tracks in a shower, is proportional to E, the incident particle energy 
→ measure scintillation light, Cherenkov light, ionization losses:  
→ all being proportional to T, will be also proportional to E   

→ Energy resolution: 
E a cb

E EE
δ

= ⊕ ⊕  

 
Example of a homogeneous lead glass calorimeter (Cherenkov light): 
X0 ~ 2 cm (from PDG)  
Ec ~ 12 MeV (from PDG) 
RM ~ (21 MeV)/Ec ⋅ X0 ~ 4 cm 
 
Lmax/X0 ~ ln(E/Ec)/ln2 ~ 13                     for E=100 GeV 
L95% ~ Lmax + 10X0 ~ 23X0  ~ 46 cm   → length of crystals ~ 50 cm  
R95% ~ 2RM ~ 8 cm       → sides ~ 4-6 cm 
        
Light is collected by PMT (typical efficiency: ~25% in a window of λ=400-500 ns, or ε=3-2.4 eV). 
 
Ncharged =(2/3)⋅Ntotal = (2/3)⋅2⋅Nmax = (2/3)⋅2⋅(E/Ec) = ((2/3)⋅2⋅E/(12 MeV) ~ 100⋅E(GeV) 
T (cm) = Ncharged ⋅X0 = 100⋅E(GeV)⋅(2 cm) = 200⋅E(GeV) 
Cherenkov photons produced in glass ~200 cm-1eV-1 , from where  
Number of generated photons in the detectable range Δε: Nγ ~ 200⋅T⋅Δε ~120⋅T 
Photons reaching back edge of a crystal at best ~50% (consider full internal reflection), Nγ ~ 60⋅T 
Photons reaching PMT at best 50% (consider geometrical acceptance), Nγ ~ 30⋅T 
Photons detected by PMT: Nγ ~ 30⋅T⋅(eff)=30⋅200⋅E(GeV)⋅0.25 = 1500 ⋅E(GeV) 
 
Poisson fluctuations in number of photons δN ~√N 
Contribution to the energy measurement resolution δE/E = δN/N ~ 2.5%/√E(GeV).  
There are also fluctuations in shower development, fraction of light captured inside crystal (internal 
reflection), fraction of light reaching PMT, etc. → The final resolution can be only worse… 
The part of the resolution that depends on energy as 1/√E is called stochastic.  
 
Errors in calibration, variations in transparency of crystal, etc. result in energy measurement errors 
proportional to energy… → δE/E = b (constant) 
 
Noise of amplifiers, noise due to backgrounds contribute to the energy measurement errors. These 
contributions are energy independent → δE/E = c/E. They get very small with energy and often can be 
neglected. 

OPAL Lead Glass Calorimeter: 
5% 2%
( )

E
E E Gev
δ

= ⊕  

Scintillating crystal calorimeters may be better (much more light): 
2% 0.5%
( )

E
E E Gev
δ

= ⊕  

 
Example of a sampling lead-scintillator calorimeter: 
1) more compact: e.g., X0 ~ 0.6 cm for lead 
2) cheaper design (sandwich of lead and scintillator plates 
3) one measures only a small fraction of T (i.e., only the part in the gaps between lead plates)  
    → smaller fraction of T → larger Poisson fluctuations 
    → the visible fraction  as detected in scintillators fluctuates… 
    → stochastic term of the resolution is typically substantially worse (14%/√E for CDF);  
         however, for very large energies may not be as important due to the constant term b  
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4.1  Hadron calorimeters 
 
→ hadrons (π, K, p, n) 
→ hadron shower, interaction length is large (λ~17 cm for Fe) → all sampling 
 

( )
E a b

E E Gev
δ

= ⊕  

 
Resolution is much worse: 
1) Emin ~ 200 MeV → number of particles produced is much smaller 
2) particles produced: mostly pions (π±, π0), some K, p, n; shares fluctuate 
3) π0 decay to photons → em shower that gives very different response (usually larger) 
4) K0, n do not ionize material (invisible from point of view of detecting media) 
5) ~30% of all energy goes on disintegration of nuclei, most of this energy is invisible 
 
Typical iron-scintillator calorimeter: a~50-100%, b~few-10% 
 
Compensated calorimeter to ~equalize em and hadronic responses (see point 3 above)  
→ U absorber with well tuned thickness of U-Scintillator plates 
→ high Z: em shower is denser and only a smaller fraction of reaches scintillator (this reduces em response 
 → uranium fission induced by neutrons increases hadronic response 
 
Good U-based calorimeters: δE/E ~ 25%/√E 
 

 
 
4.1  Bolometric calorimeters 
 
Bolometric calorimeter evaluates the absorbed energy by measuring the change in temperature:  
ΔT = E / C, were C is the specific heat constant of material used. 
 
C ~ T3 
→ one gains a much better sensitivity and resolution by cooling the calorimeter to cryogenic temperatures. 
 
Semiconductor crystals also allow for a simultaneous measurement of ionization (electric signal)—an extra 
handle in discriminating signals of different origin... 
 
These detectors become more and more popular in dark matter searches… 
 
 



Introduction to Elementary Particle Physics.                  Note 11  Page 16 of 20 
 
5.  Particle identification 
 
5.1 Specific interactions: γ, e, μ, hadrons, ν 
 
Electrons  leave a track of ionization in low-material detectors (e.g. wire chambers) and result in 

dense/short electromagnetic showers when hit a dense material (calorimeters) 
 
Photons  leave no ionization in low-material detectors (e.g. wire chambers) and result in 

dense/short electromagnetic showers when hit a dense material (calorimeters) 
 
Hadrons  charged hadrons (p, π±, K±) leave tracks of ionization in low-material detectors (e.g. wire 

chambers) and result in broad and long hadronic-interaction showers when hit a dense 
material (calorimeters). Neutral hadrons (n, K0) give only hadronic showers. 
IMPORTANT: in high energy collisions, hadrons often appear in a form of jets (as a 
result of fragmentation of high energy quarks/gluons) and for many analyses one needs to 
identify jets and measure their energy (and need not worry about individual hadrons 
inside jets). 

 
Muons  leave a track of ionization in low-material detectors (e.g. wire chambers) and result in 

electromagnetic showers when hit a dense material (calorimeters) 
 
Neutrinos  escape the detector and their presence among collision products can be inferred from 

missing energy or imbalance of the total momentum 
 
All others  are inferred, e.g. via decay products (invariant mass peaks, displaced vertices, etc.) 
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5.2 Matching momentum and velocity: π, K, p (TOF, dE/dx, Cherenkov)  
 

  
 
 
Time of Flight (TOF) detectors  
 
Fast detectors that can measure the time of flight, time it took a particle to fly a distance L: v=L/t. 
 

 
 

Combine TOF with momentum measurement: 
2 2

2 1c tm p
L

= − . 
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dE/dx-detectors 
 

Measure density of ionization along particle’s track ( )2 2
2

1 lndE
dx

β γ
β

∝  and evaluate particle’s 

velocity. The methode works well for small velocities where dependence of dE/dx on v is very steep and 
also has some limited precision at velocities corresponding to the relativistic rise of dE/dx. The main 
problem of these method is the large fluctuations (mostly due to δ-electrons) 
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Cherenkov radiation detectors 
 
Threshold Cherenkov detectors  
use the threshold property of the Cherenkov light (v>1/n)  
 

 
 
Ring Imaging Cherenkov detectors (“RICH”) 
measure radiation angle of Cherenkov light: v=1/(n⋅cosθ). 
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5.3 Enhancing electron identification (Transition Radiation detectors) 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
           TRACKER 


