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Probability Distributions 
 
 
Poisson distribution: random (independent of each other) events occurring at rate ν.  
Therefore, during time Δt, one should be expecting to detect (on average) n=ν⋅Δt events. 
However, the actually detected number of events, k, in a concrete experiment may be different: 

Probability of detecting k events Pk(n):  
!
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k
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Average k n=  

Variance, Dispersion ( )22 k n nσ = − =  

RMS (root of mean squared, or root-mean-squared) = 2( )k n n− =  

 
 
Gaussian distribution is a good approximation for many typical measurement errors. Its 
importance is largely derived from the central limit theorem (see below). 

Probability of measuring x within the range from x1 and x2 is 
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Where p(x) is probability density: 
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Probability to be within ±1σ is 68% 
Probability to be within ±2σ is 95% 
Probability to be within ±3σ is 99.7% 
 
 
Central Limit Theorem: if one has n independent variables x1,….., xn having probability 
distribution functions of any shape (but with finite means μi and variances σi

2), the sum 
iX x=∑  at n→∞ will have the Gaussian distribution with the mean equal sum of μi and the 

variance equal to sum of σi
2. 

 
 
Poisson distribution of large n (n>>1) is very close to Gaussian with x0=n, σ2=n. 
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Propagation of errors: 
 
m=f(x):  
if x has a small uncertainty σx,  

one can estimate σm=fx⋅σx  
 
m=f(x, y):  
if x and y have small uncertainties σx and σy and no correlations,  

σm
2= (fx⋅σx)2 + (fy⋅σy)2  

 
 
Averaging: 
 
Assume that there are  
two measurements of x (x1 and x2) that have estimated or known errors σ1 and σ2.  
 
One can easily calculate that the best estimate of the value of x and the error on this estimate are: 

2 2
2 1

1 1 2 2 1 22 2 2 2
1 2 1 2

2 2
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Trivial consequences:  
- a lousy measurement can be ignored, it hardly adds any weight for the estimate and does 

not improve the error on the estimate 
- two equally good/bad measurements should be counted with equal weighs, and the error 

from two measurements is 1/√2 better than from a single measurements 
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Statistics:  
 
Given the finite number of measurements,  
a) estimate probability distribution function parameters (e.g., mean, width, …) and  
b) evaluate errors on the estimations 
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Assume that the true probability distribution has mean x0 and dispersion D=σ0

2 

Best estimate of mean: 
1

1 N

m i
i

x x
N =

= ∑  

Best estimate of dispersion 2 2
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Estimate on error in xm: m
mx

N
σδ =  

Estimate on error in σm: 
2

m
m N

σδσ =  (for Gaussian distribution and large N) 
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Confronting Data and Theory: Best Estimates of Theory Parameters 
 
The primary questions one must answer are: 

a) is the theory consistent with data? 
b) what are the best estimates on theoretical parameters? 
c) what are the errors on the estimates? 
d) are there any indications that experimental data are not self-consistent? 

 
 
Max Likelihood Method 
 
Generic Example: 

• Data: a set of yi measurements at xi points with  
o known fi(yi|y) error distribution functions:              

probability of measuring yi when the true value is y 
o and no correlations between points 

• Theory with parameter(s) a: y=F(x, a) 
 
 
Probability to get a particular set of measurements yi for a given choice of parameter(s) a: 
 

( | ( , )) ( | ( , )) ( | )i i i i i i i i i i i
i i i i i

dP dp f y F x a dy f y F x a dy L y a dy= = = =∏ ∏ ∏ ∏ ∏  

( | )iL y a —Likelihood function. 
 
We will choose the best possible theoretical parameter by maximizing the probability dP, or 
equivalently, the Likelihood function.  
Note, it is often more convenient to maximize the log of L, ( )ln ( | )iL y a , instead of L—the 
answer would be the same as the log-function is monotonous. 

 
Case of Gaussian errors:  
Maximum Likelihood method is equivalent to the Minimum χ2 method: 
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• Statistical expectations for χ2 and what if you get something very different 

 
  

 
o 2 . . .       (number of degrees of freedom)measurements parametersn k n d fχ = − =  
 
o Large χ2 

 Theory does not describe Data 
 Errors are underestimated 
 There are large “negative” correlations (systematic errors) 

o Small χ2 
 Errors are overestimated 
 There are large “positive” correlations (systematic errors) 

o Other cross-checks for “hidden” systematic errors 
 
 
 
 

• Estimation of errors on parameter estimates from χ2 
o a → a±σa,            χ2 → χ2+1 

 
 
 

• When using the χ2 minimization method is wrong: 
o Errors are not Gaussian, e.g.:  

 Gaussian with long tails 
 Small statistics (must use Poisson errors) 
 Flat error distribution for digitized signal (bin width >> noise)  

o Errors have correlations:  
 Both Max Likelihood and Min χ2 Methods can be appropriately modified 



Introduction to Elementary Particle Physics.                                  Note 13  Page 7 of 18 
 
Signal in presence of background:  statistical significance of signal presence  
 
You expect b events (background) and observe n0 events and n0 is greater than b. What is the 
significance of this observation? Have you discovered a new process that would account for the 
observed access of events? Or, maybe, this excess is a plain statistical fluke? Significance S is 
introduced to quantify the probability of a statistical fluctuation to observe n0 events or more 
when you expect only b events. It maps a probability of a statistical fluctuation into a “number of 
Gaussian sigmas”: 

2
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Two plots below show histograms of reconstructed invariant masses for positive-negative 
charged particles in reactions  p + p→ e+ + e- + anything  
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What is significance of the excess in the bin at Mass=70 in the left- and right-hand histograms? 
 
The answer will depend strongly on whether you know a priori the mass of this resonance. 
 
Assuming you knew that the resonance mass was predicted to be exactly M=71 and it would be 
very narrow, much narrower than the bins used in these histograms ΔM=4. Then, using bins 
other than the one centered at M=71, one can estimate background rate to be B=100 counts. 
Assuming that the background in bin at M=71 is the same as in the other bins, it is expected to 
fluctuate with σ=√(100)=√(B)=10. The excess of events in the resonance-containing bin in the 
first case is S=172-100=72, or 7.2σ, which can be written as / 7.2S B σ= . The second 
histogram gives 25 excess events, or / 2.5S B σ= . Probabilities p of such upward fluctuations 
are <10-12 and 0.6%. Both numbers are very small and one can feel confident enough to claim the 
discovery of the predicted resonance. 
 
If one did not know at what mass the resonance might show up, the significance of the peaks 
would be very different. Now we need to take into account that there are 20 bins and chances 
that at least one of them would fluctuate upward as measured would be larger that the probability 
of a particular a priori predetermined bin. Probabilities of none of the bin with flat background 
fluctuating upward as shown is (1-p)20. Therefore, probability of at least one bin fluctuating 
upward is 1-(1-p)20, which gives ~10-11 and 12%. One can see that the statistical significance of 
the discovery in the second case is not as striking and one would have to collect more data. 
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Enhancing Signal over Background: 
 
Collecting more data. Collecting more data implies a reduction in relative statistical errors 
resulting in a cleaner signal identification. 

- same histogram 
- assuming that signal was real in the second histogram, collect 10 times more data.  
- the background would be B=100×10=1000 events,  
- the excess would also grow 10-fold, S=25×10=250 events 
- Then, signal significance per bin would be S/√B=250/√1000=7.9σ.  

 
Data cuts (offline selection/cuts). One can enhance signal significance by using some special 
criteria that allow one to suppress background by a large factor while leaving the signal events 
relatively intact. For example, if background charged tracks are mostly pions, one can use 
electron/pion separation criteria (e.g. electromagnetic calorimeter). Let's assume that such 
criteria allow to cut pions by a factor of f=10, while remain ε=90% efficient to 
electrons/positrons. So statistics will be reduced, but with very different factors for background 
and signal. 

- same histogram and assuming that signal was real 
- the background would be Bnew= Bold×f=10 events,  
- the excess would also decrease, Snew=Sold×ε=22 events 
- Then, signal significance per bin would be Snew/√Bnew= (Snew/√Bnew)×(ε/√f)=7σ.  

 
Note: once statistics becomes very small, one must not use σ=√N…. 
 
 
 
Trigger (online selection/cuts).  
 
Often one is limited not by a number events that can be produced, but by the number of events 
one can record. Then, online selection/cuts (trigger conditions) can be applied to enhance the 
statistical significance of the signal being looked for. For instance, identification of electrons 
discussed above can and is often done online. 
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Signal in presence of background:  Confidence Levels  
 
One of the most popular ways of estimating confidence levels for observing or not observing a 
signal is based on so-called Bayes’ theorem: 

( | ) ( )( | )
( | ) ( ) 
L y a ap a y

L y a a da
π
π
⋅

=
⋅∫

, where 

 
p(a|y)—probability that theory’s parameter is a, given we have a set of measurements yi; 
L(y|a)—Likelihood function of getting a set of measurements yi, if the theory’s parameter is a; 
 
π(a)—a priory probability distribution function for the theoretical parameter a, which might be 
based on theoretical reasoning, practical considerations, or plain common sense… At the end, it 
always boils down to some a priori believes… For example, an a priori probability distribution 
function for signal rate can be naturally assumed to be the step-function: zero for negative values 
and uniformly distributed for positive values. However, what is flat in one parameterization, may 
not be flat in an another (e.g., one can assume that it is the matrix element that must have flat 
distribution; in this case the rate will be zero for negative values and NOT flat for positive 
values). Bayes’ theorem shows this arbitrariness explicitly. 
 
Using this way obtained distribution p(a|y), one can exclude regions of parameter space with 
some predefined confidence level:  

0

0

( | )1 ,    where   
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Popular confidence levels are CL=95% and 99% 
 
Example: 
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The plot on the left shows a histogram of reconstructed invariant masses for positive-negative 
charged particles in reactions  p + p→ e+ + e- + anything. Assume that experimental setup was 
such that, if resonances were to be produced at all, one would record on average 1 electron-
positron pair per each 1 pb of the resonance production cross section. 
 
The plot on the right shows the CL-contour (line in this case) of signal cross section being higher 
than the line. For calculating these limits, I used π(σ)=const for all values, including negative 
ones. Note that the line is the function of mass and the wiggling results from the actual numbers 
of observed counts. 
 

EXCLUDED at 99% CL 
i.e. we judge the probability of  any 
given σ from this grey area is <1%  
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Systematic errors (estimation of biases) 
 

- biases due to theory (background level and/or shape, signal shape) 
 
- biases due to event selection/cuts (either at trigger or offline levels) 
 
- biases due to reconstruction and corrections (apparatus effects, why error function tails 

are so dangerous in new physics searches) 
 
- biases due to the analysis methodology (e.g. ignoring correlations between errors) 

 
 
 
 
 
Cross-checks: 
 
A good data analysis presents a large number of crosschecks and auxiliary measurements to 
show that an experimenter understands what he/she is doing 
 



Introduction to Elementary Particle Physics.                                  Note 13  Page 11 of 18 
 
Traps of wishful thinking (posteriori adjustments) 

 
Histogram Binning: The choice of in width is usually based on the expected statistics of events 
and detector resolution; however, there are no strict rules. And there is always a freedom of 
shifting bins left and right. Although, a priori many of possible choices are equally valid, one 
finds that by tweaking them posteriori one can "enhance" the apparent statistical significance of a 
signal, especially in the cases of small number of events and marginal significance. Below are 
four histograms with the same bin width, but with different offsets. The data used are exactly the 
same set of points, generated to be randomly distributed with the density of 25 events per unit of 
Mass. One can see that, by shifting bins left-right, the accidental "peak" around Mass=70 can be 
tuned to vary from 25 to 12 over the average background of 100 (S/√B is 1.2 to 2.5σ). Another 
"optimization" can be can be done by choosing how many bins are to be used for estimating the 
background. By using ±4 bins around the "peak" at M=70 in the second histogram, one can take 
advantage of statistical downward fluctuation around M=55. This choice would give the average 
Background=97.5, and, consequently, "peak" significance S/√B=(125-97.5)/√97.5=2.8σ. One 
can play the game further and pick the "optimal" bin width…  
 
Selection Cuts: Similarly, "optimization" of event selection cuts will "enhance" the desired 
signal, if the optimization is based on promoting the significance of the signal posteriori, rather 
than on a priori physics considerations. 
 
Dismissing "bad" data: Another trap: one can notice that removing a particular subset of data, 
say, taken on Mondays (or with crystal sample 1, or at the beginning of each data collection run, 
or anything else) makes "signal" more prominent. Typically, this prompts one to think what may 
have gone wrong on Mondays that lead to "bad" data, rather than to think what may have gone 
wrong on Tuesday-Fridays that lead to "too good" data. The errors of both types do happen, but 
such biases in thinking lead to finding real errors of the first kind more often. Sometimes, 
explanations may end up being merely plausible. Obviously, this may lead to biases toward 
"discovery". 
 
That search is just one of many: There are many on-going searches, 100s, all proceeding at the 
same time and coming up for publications every year. If one chooses 99% CL of observing 
signal as a sufficiently convincing criterion, then, he/she should not be surprised to see a few 
“breakthroughs” every year…  
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Solutions (if you do analysis) 
 

- Binning:   When at risk (typically, when you expect to have or actually have small 
statistics), use methods devised for unbinned data analysis… 

 
- Significance evaluation:  Never use S/√B for small statistics—use Poisson probabilities. 

In general, make the best effort to find the correct error distribution functions. Presence 
of systematic errors may drastically effect the CL calculations. 

 
- Selection Cuts:  To optimize the cuts, use a priori considerations, Monte Carlo generated 

events and, if absolutely needed, only a small fraction of data (e.g., 20%); apply the 
optimized cuts to the rest of the data (no further tuning of cuts is allowed after opening 
the "box" with the remaining data); the results should include the fraction of data used for 
cut optimization. 

 
- Dismissing "bad" data:   No recipe… Be aware… 

 
 
Rules of thumb:  
 
3σ--might be a real thing or might be a statistical fluke, worth publishing, do NOT claim a 
discovery, more data and/or independent experiments are needed… 
 
5σ--time to get serious, independent experiments are needed… 
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Examples of low statistic “discoveries”: 
“Double-β neutrinoless decay” by Heidelberg-Moscow Experiment 
 

76Ge → 76Se + 2e- 
This implies that neutrino is its own antiparticle, a la photon… 
Energy of two electrons is known: Q = M(76Ge) - M(76Se) = 2039.00±0.05 keV 
 
Paper of January 2001 claimed the discovery of neutrinoless double-β decay…  
A good fraction of the collaboration did not sign the paper… 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Large window scan gives CL~70% for observing a non-zero signal at Q=2039 keV 
Smaller (“optimized”?) window scan gives CL~97% for observing a non-zero signal  
 

?

? 
? 
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Examples of low statistic “discoveries”: 
Signs of “lepto-quark” at HERA? 
 

 
 
 

?
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Examples of low statistic “discoveries”: Higgs at LEP? 
 
One does not know where it is, but, if it is there to be observed, it must be at the very tail 
(otherwise, it would have been seen before)… 
 

2000: ALEPH: ~4σ for Higgs signal present 
All four collaborations combined: ~2.9σ 

 
2002: More thorough re-analysis of the same data: 
  ALEPH: ~3σ 

All four collaborations: <2σ, 
or, by inverting logic, there is no Higgs with MH<114 GeV at 95% CL. 
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Examples of low statistic “discoveries”: 
Top quark at Tevatron—real thing that started from 2.8σ (99.7% CL) 

 
Debate at CDF over the title key word: Discovery? Study? Evidence? Observation? Search for? 
The jokes were: Evidence for Study… Observation of Search for… 
 
The final compromise was  
“Evidence for top quark production in p-bar p collisions at sqrt(s) =1.8 TeV” 
 
Abstract: …The probability that the measured yield is consistent with the background is 0.26%. 
Though the statistics are too limited to establish firmly the existence of the top quark, a natural 
interpretation of the excess is that it is due to tt-bar production…. 
 
Subsequent papers based on much larger statistics confirmed the signal and were titled 
“Discovery of…” 
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Appendix: Deriving Poisson distribution and its parameters  

 
o Assume average rate of μ events per second. 
o Large time interval T: expect average n=μT 
o Calculate probabilities to get none, one, two, three, etc. events: 
 

 The time interval can be broken in M=T/dt small intervals 
 probability to get one event during dt: p1=μdt=μT/M 
 probability of getting more than 1 is vanishing in comparison to p1 at M→ ∞  
 probability to get no events during very short time dt: p0=1-μdt 

 
 probability to get no events during T: P0=p0

M=(1-μdt)M=(1-μT/M)M → e-μT= e-n 
 probability to get 1 event: P1=C(M,1)⋅p1⋅p0

(M-1)= M⋅(μT/M)⋅p0
M/p0 → ne-n 

 probability to get k event: Pk=C(M,k)⋅(p1)k⋅p0
(M-k)= …. →  
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 Cross-check: Average = 0⋅P0 + 1⋅P1 + … + k⋅Pk + … 

                                     = Σ k⋅(nk/k!)⋅e-n = n⋅e-nΣ nk-1/(k-1)! = n⋅e-nen  
                                     = n  

 
o RMS (root of mean squared)  = 2( )k n n− =  
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