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Data Analysis Basics

Probability Distributions
Poisson distribution
Gaussian distribution
Central Limit Theorem
Propagation of errors
Averaging with proper weights

Statistics
Estimates of average, sigma, and errors on the esates

Confronting Data and Theory: Best Estimates of Thexy Parameters
Max Likelihood Method
Min x* Method and dealing withx® values

Signal in Presence of background:

Statistical Significance of an observed signal
Enhancing signal over background

Confidence Levels when a signal is not seen
Systematic Errors
Cross-checks
Traps of Wishful Thinking

Examples of low statistic “discoveries”
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Probability Distributions

Poisson distribution: random (independent of each other) events ocoyai ratey.
Therefore, during timat, one should be expecting to detect éerag@ n=v/At events.
However, the actually detected number of evdqts, a concrete experiment may be different:

k
Probability of detecting k evenB(n): P, = % e"
Average(k) =n
Variance, Dispersiow? = <(k - n)2> =n

RMS (root of mean squared, or root-mean-squar {é(k— n)2> =Jn

Gaussian distribution is a good approximation for many typical measungneerors. Its
importance is largely derived from the central titheorem (see below).

Probability of measuring x within the range fromaxd % is P = j p( X dx
X

. . . 1 o
Where p(x) is probability densityp(x) = e
p(x) is p y yR(X) Tono
Probability to be withint1lo is 68%
Probability to be withint20 is 95%
Probability to be withirt3o is 99.7%
Central Limit Theorem: if one hasn independent variableg,,....., % having probability

distribution functions of any shape (but with finimeansy and variancess?), the sum
X :Z>g at n—oo will have the Gaussian distribution with the mesgqual sum of; and the

variance equal to sum ef.

Poisson distribution of large n (n>>1) is very clasto Gaussian with ¥=n, ®=n.
Average = 0.33 Average = 50
* Gamsant) Fal * Cauenan oy

Pk and G(x)
o
o
w

tﬂy
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Propagation of errors:
m=f(x):

if x has a small uncertainsy,
one can estimaig=f/a

m=f(x, y)

if x andy have small uncertainties ands, andno correlations
om = (Fud)” + ()

Averaging:

Assume that there are
two measurements af(x; andxy) that have estimated or known erretsandos.

One can easily calculate that the best estimatieeofalue ok and the error on this estimate are:

o? o?
= + ., wWherew=——2— andw=——"2_—
Xn =WXT WX W o7+ 07 W o2+
2 2
g2 =99
m 2 2
o; +0,

Trivial consequences:
- alousy measurement can be ignored, it hardly adgsveight for the estimate and does
not improve the error on the estimate
- two equally good/bad measurements should be cowvitbcequal weighs, and the error
from two measurements isvP better than from a single measurements
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Statistics:
Given the finite number of measurements,

a) estimate probability distribution function paweters (e.g., mean, width, ...) and
b) evaluate errors on the estimations

16

= = =
o N IS

number of events
(measurements giving particular value
(o]

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
measurement value

Assume that the true probability distribution hasamx and dispersion Doy

N
Best estimate of mearx,, = %Z X
i=1
: . L, 1 )
Best estimate of dispersiary, = N—Z(xi -X,)
1<

. . g
Estimate on error iRy Ox, = —=

JN

Estimate on error ian: o0, = Im (for Gaussian distribution and large N)

V2N
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Confronting Data and Theory: Best Estimates of Thexy Parameters

The primary questions one must answer are:
a) is the theory consistent with data?
b) what are the best estimates on theoretical paras?ete
c) what are the errors on the estimates?
d) are there any indications that experimental daanat self-consistent?

Max Likelihood Method

Generic Example:
» Data: a set of; measurements &tpoints with
o knownfi(yi|y) error distribution functions:
probability of measuring; when the true value is
0 and no correlations between points
* Theory with parameter(s} y=F(x, a)

Probability to get a particular set of measuremgifts a given choice of parameters)

dP=T1dr=]] f(yl Kx 3 dy=[] (vl Rix ] d¥ ¥ ]

L(y, | a)—Likelihood function.

We will choose the best possible theoretical patamiey maximizing the probability dP, or
equivalently, the Likelihood function.

Note, it is often more convenient to maximize tbg bf L, In(L(yi |a)), instead of L—the
answer would be the same as the log-function isatoorous.

Case of Gaussian errors:
Maximum Likelihood method is equivalent to the Mimimx? method:

InL(y [@)=In[] T(y [FOGa)=2 Inf(y | F(x, d)

_(h-F(%.9)°

= | 207
2in e

- Cons 3 U FL Y

1
=Const—= y?
2)(
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« Statistical expectations fof and what if you get something very different
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2
o Largey
= Theory does not describe Data
= Errors are underestimated
= There are large “negative” correlations (systematiors)
o Smallx?
= Errors are overestimated

= There are large “positive” correlations (systematiors)
0 Other cross-checks for “hidden” systematic errors

« Estimation of errors on parameter estimates fgdm
0 a - ato,, ¥ - Y+l

« When using th&? minimization method is wrong:
o Errors are not Gaussian, e.g.:
= Gaussian with long tails
=  Small statistics (must use Poisson errors)
= Flat error distribution for digitized signal (binidth >> noise)
o Errors have correlations:
= Both Max Likelihood and Mirx? Methods can be appropriately modified
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Signal in presence of background: Statistical Sighcance

You expectb events (background) and obseryeevents andy is greater thaim. What is the
significance of this observation? Have you discedeat new process that would account for the
observed access of events? Or, maybe, this exeesplain statistical fluke? Significance S is
introduced to quantify the probability of a statat fluctuation to observe, events or more
when you expect onllg events. It maps a probability of a statistical fliation into a “number of
Gaussian sigmas”:

D(n>rb|b);bli(lt)£m d

significance 1 2 3 4 5
probability (p-value) 16% 2.3% 0.14% 3x10 3x10’

Significance estimators (poor man solutions):
_signal _ N e~ b_ S
* ForlargeN, S = e =—.
3 Jbkgd Jb Vb
This is a very popular estimator, but it has a Jengy performance small statistics.
Forb<100, thisS; estimator breaks down and gives too large valoesréstimates
significance).

* The best simple estimator iscLzJZrbln(1+ s/ h-2¢<. It arises from comparing

probabilities of the fact that the number of obseémy is due tobackground+signalr
due tobackground-onlya so-called likelihood ratio:

_ _Pp(nIstb
S, =+/2InQ, where Q=———=
- p(ny | b)
This estimator is very close to the true significaven for a very small statistics, does
not deviate by more than 0.2 or so.
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Two plots below show histograms of reconstructeghiiant masses for positive-negative
charged particles in reactions+ p— € + € + anything
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What is significance of the excess in the bin as84&0 in the left- and right-hand histograms?
The answer will depend strongly on whether you k@opriori the mass of this resonance.

Assuming you knewhat the resonance mass was predicted to be gXeil1l and it would be
very narrow, much narrower than the bins used @sehhistogram&aM=4. Then, using bins
other than the one centered at M=71, one can dstitveckground rate to be B=100 counts.
Assuming that the background in bin at M=71 is dhene as in the other bins, it is expected to
fluctuate witho=v(100)=/(B)=10. The excess of events in the resonance-camgabin in the

first case is S=172-100=72, or @,2which can be written aS/\/T3:7.20. The second

histogram gives 25 excess eventsSor/ B=2.50 . Probabilitiesp of such upward fluctuations
are <10'? and 0.6%. Both numbers are very small and ondesrtonfident enough to claim the
discovery of the predicted resonance.

If one did not knowat what mass the resonance might show up, thefisigmie of the peaks
would be very different. Now we need to take int@a@unt that there are 20 bins and chances
that at least one of them would fluctuate upwardchaasured would be larger that the probability
of a particular a priori predetermined bin. Probaes of none of the bin with flat background
fluctuating upward as shown is ()2°. Therefore, probability of at least one bin fluating
upward is 1-(1p)?°, which gives ~18* and 12%. One can see that the statistical sigmitie of

the discovery in the second case is not as striimjone would have to collect more data.
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Enhancing Signal over Background:

Collecting more_data Collecting more data implies a reduction in refatstatistical errors
resulting in a cleaner signal identification.

- same histogram

- assuming that signal was real in the second higtogcollect 10 times more data.

- the background would be B=1800=1000 events,

- the excess would also grow 10-fold, Sx28=250 events

- Then, signal significance per bin would b&/i5#250A/1000=7.9.

Data cuts (offline_selection/cuts)One can enhance signal significance by using sgpeeial
criteria that allow one to suppress background lgrge factor while leaving the signal events
relatively intact. For example, if background cleatgtracks are mostly pions, one can use
electron/pion separation criteria (e.g. electronedigncalorimeter). Let's assume that such
criteria allow to cut pions by a factor of=10, while remain &&90% efficient to
electrons/positrons. So statistics will be redudrd,with very different factors for background
and signal.

- same histogram and assuming that signal was real

- the background would be,B= Bogxf=10 events,

- the excess would also decreasewSS,gxe=22 events

- Then, signal significance per bin would hgB/Bhew= (Shew'VBnew) X(e/Vf)=70.

Note: once statistics becomes very small, one matstises=vN....

Trigger (online selection/cuts)

Often one is limited not by a number events that lsa produced, but by the number of events
one can record. Then, online selection/cuts (triggeditions) can be applied to enhance the
statistical significance of the signal being looked. For instance, identification of electrons
discussed above can and is often done online.
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Signal in presence of background: Exclusion Limits

Let's assume you look for black holes at LHC. Yoaitwor a year and do not find any. How
would you quantify the outcome of your search? [dehto find black holes” sounds too lame.
Maybe, one can say that, based on the experimeatal you are 99% confident that the
following statement is correct: “Black hole prodoat at LHC, if possible at all, has a cross
section is smaller than so-many fempto-barns”. 39 confidence level (C.L.) means that you
are allow yourself a 1% chance to be wrong in wmat are stating. In the following, | give

examples on how to set such exclusion limits usigdifferent approaches.

By a direct analogy with the significance definits) one may try to construct a probability of

observing fewer thangrevents, in assumption that the signal was s.
o

p(nsn|b+9=> KK b &

0
If, for a given signal s, this probability is snallthana, the signal at that strength would be
excluded. This sounds good, but has one unfortym#tdl. If you happened to be unlucky and
you see quite fewer thdnevents, than you would formally exclude even ssfich is a logical
nonsense.
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Method A

Another way of asking a similar question:

Given we observed, events, what are the odds to obserwey due to theokgd+signal
hypothesis or thdkgd-only hypothesis?This is sort of making bets on two possible
hypotheses:

o o b+SnO (bre
) ;p(n|b+$ i ;( n0|) e(b )
r= ny - b,
> p(n|b) d—e
n=0 nZOnO!

There are conventional names for the two sums laeid atio:

o I cL,
Cl. =2 P(nlb+ 9, CL=> fnb, cg=C—L;S=

Assuming that that signat@, the odds defined this way range from O to 1.
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Method B

Another way of estimating an exclusion limit froratrobserving a signal is based on a so-called
Bayes’ theorem
L(y|a)t(a)

, ere
jL(y| a)77(a) da

p(al y)=

p(aly)—probability that theory’s parameteras(e.g. black hole production cross section), given
we have a set of measuremeyts

L(y|a)—likelihood function of getting a set of measurenss if the theory’s parameter &

7£a)—a priory probability distribution function for thiaeoretical parametex, which might be
based on theoretical reasoning, practical condideiss or plain common sense... At the end, it
always boils down to some a priori believes... Foaregle, an a priori probability distribution
function for signal rate can be naturally assuntebe the step-function: zero for negative values
and uniformly distributed for positive values. Hoxge, what is flat in one parameterization, may
not be flat in an another (e.g., one can assuntettithe matrix element that must have flat
distribution; in this case the rate will be zera feegative values and NOT flat for positive
values). Bayes’ theorem shows this arbitrarinepdi@gty.

Using the probability distribution functiop(aly) obtained this way, one can exclude regions of
the parameter space with some predefined probabilinaking an errord():

+00

[ p(aly) da= a

ay
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Given we observedy events, what is th@df f(s) for the value ofs in the signal
hypothesis? Assume flat prior fer0.

O+ 9® ovg

f9=psbg = PRI o RBlF P L
[ p(n1b+9tr(90ds | pal b X ds 3 e’

» Exclude alls>s; in the tail off(s):

i (b+s)" e (0+s)
Jf9as= =1 = a
S¢ 7e_b
; n!
1
Bkgd b =3
—n0=0
—n0=3
—n0=6
D
S
o
0 5 10 15 20

signal s

We can say that the a probability that signal igéathan gis very smalla (popular choices are

1%, 5%) and therefore we exclude this possibilitthvit-a confidence level (99% or 95%). A
scientific paper may read in this case as follows &xcluded signal spsvith a 95% C.L.”

NOTE: Both presented approaches give identicaltesuhen we use a flat prior on the signal
event count in the Bayesian approach.
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Example:
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The plot on the left shows a histogram of recoms$éd invariant masses for positive-negative
charged particles in reactions + p— € + € + anything.Assume that experimental setup was
such that, if resonances were to be produced abmél would record on average 1 electron-
positron pair per each 1 pb of the resonance ptamucross section.

The plot on the right shows the CL-contour (linghis case) of signal cross section being higher
than the line. For calculating these limits, | us€d)=const for all values, including negative
ones. Note that the line is the function of mags the wiggling results from the actual numbers
of observed counts.
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Systematic errors (estimation of biases)

- biases due to theory (background level and/or sheageal shape)
- biases due to event selection/cuts (either aterigg offline levels)

- biases due to reconstruction and corrections (appaeffects, why error function tails
are so dangerous in new physics searches)

- biases due to the analysis methodology (e.g. iggarorrelations between errors)

Cross-checks:

A good data analysis presents a large number eschecks and auxiliary measurements to
show that an experimenter understands what hessihang
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Traps of wishful thinking (posteriori adjustments)

Histogram Binning: The choice of in width is usually based on theeetpd statistics of events
and detector resolution; however, there are natstules. And there is always a freedom of
shifting bins left and right. Although, a priori ma of possible choices are equally valid, one
finds that by tweaking them posteriori one can ‘&@rde" the apparent statistical significance of a
signal,_especially in the cases of small numbeew@nts and marginal significanddelow are
four histograms with the same bin width, but witfiestent offsets. The data used are exactly the
same set of points, generated to be randomly loig&d with the density of 25 events per unit of
Mass. One can see that, by shifting bins left-ritine accidental "peak™ aroumdiass=70 can be
tuned to vary from 25 to 12 over the average bamkui of 100 (S/B is 1.2 to 2.5). Another
"optimization” can be done by choosing how manysbame to be used for estimating the
background. By using4 bins around the "peak" at M=70 in the secondbistm, one can take
advantage of statistical downward fluctuation abd=55. This choice would give the average
Background=97.5, and, consequently, "peak" sigaifte S/B=(125-97.5)/97.5=2.8&. One
can play the game further and pick the "optimaii' Wwidth...

Selection Cuts:Similarly, "optimization" of event selection cutgll "enhance" the desired
signal, if the optimization is based on promotihg significance of the signal posteriori, rather
than on a priori physics considerations.

Dismissing "bad" data: Another trap: one can notice that removing a paldr subset of data,
say, taken on Mondays (or with crystal sample Igtahe beginning of each data collection run,
or anything else) makes "signal" more prominenpidally, this prompts one to think what may
have gone wrong on Mondays that lead to "bad" dather than to think what may have gone
wrong on Tuesday-Fridays that lead to "too goodadahe errors of both types do happen, but
such biases in thinking lead to finding real errofsthe first kind more often. Sometimes,
explanations may end up being merely plausible.i@lsly, this may lead to biases toward
"discovery".

That search is just one of manyfhere are many on-going searches, 100s, all pdougat the
same time and coming up for publications every y#aone chooses 99% CL of observing
signal as a sufficiently convincing criterion, thdre/she should not be surprised to see a few
“breakthroughs” every year...
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Solutions (if you do analysis)

- Binning:  When at risk (typically, when you expdot have or actually have small
statistics), use methods devised for unbinned alzadysis...

- Significance evaluation: Never use/B/for small statistics—use Poisson probabilities.
In general, make the best effort to find the cdrexcor distribution functions. Presence
of systematic errors may drastically effect caltialss.

- Selection Cuts: To optimize the cuts, use a pdonsiderations, Monte Carlo generated
events and, if absolutely needed, only a smalltifvacof data (e.g., 20%); apply the
optimized cuts to the rest of the data (no furtiueing of cuts is allowed after opening
the "box" with the remaining data); the resultsiddanclude the fraction of data used for
cut optimization.

- Dismissing "bad" data: No recipe... Be aware...

Rules of thumb:

3o--might be a real thing or might be a statistitaké, worth publishing, do NOT claim a
discovery, more data and/or independent experinmaetaeeded...

50--time to get serious, independent experimentnaeeled...
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bins 0-4-8-12-...
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Examples of low statistic “discoveries”:
“Double-3 neutrinoless decay” by Heidelberg-Moscow Experimen

"®Ge - "°Se + 2e
This implies that neutrino is its own antipartickela photon...
Energy of two electrons is known: Q = fiGe) - M(°Se) = 2039.00+0.05 keV

Paper of January 2001 claimed the discovery ofrmelé¢ss doubld decay...
A good fraction of the collaboration did not sidye tpaper...

counts

gOOO 2010 2020 2030 2040 2050 2060 2070 2080
energy [keV]
Figure 2. Sum spectrum of the "®Ge detectors Nr. 1,2,3,5 over the period August 1990 to
May 2000, 46.502kgy. The curve results from Bayesian inference in the way explained in
the text. It corresponds to a half-life T?72:(0.75 - 18.33)x 10%% y (95% c.l.). ,)

probability K [%]

probability K [%]

energy [keV] energy [keV]

Large window scan gives CL~70% for observing a mere signal at Q=2039 keV
Smaller (“optimized™?) window scan gives CL~97% @irserving a non-zero signal
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Examples of low statistic “discoveries”:
Signs of “lepto-quark” at HERA?

ZEUS 1994-97 Preliminary
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Examples of low statistic “discoveries”: Higgs at EP?

One does not know where it is, but, if it is therdoe observed, it must be at the very tail
(otherwise, it would have been seen before)...

2000:

2002:

N

ALEPH: ~4o for Higgs signal present

All four collaborations combined: ~2.9%

ALEPH: ~30

More thorough re-analysis of the same data:

All four collaborations: <20,
or, by inverting logic, there is no Higgs with My<114 GeV at 95% CL.

Online Higgs Analyses
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Examples of low statistic “discoveries”:
Top quark at Tevatron—real thing that started from 2.80 (99.7% CL)

Debate at CDF over the title key word: Discovery?d$? Evidence? Observation? Search for?
The jokes were: Evidence for Study... ObservatioSedrch for...

The final compromise was
“Evidence for top quark production in p-bar p casibns at sqgrt(s) =1.8 TeV”

Abstract: ... The probability that the measured yield is consisteith the background is 0.26%.
Though the statistics are too limited to estabfigily the existence of the top quark, a natural
interpretation of the excess is that it is duettbdar production....

Subsequent papers based on much larger statienfisnced the signal and were titled
“Discovery of...”
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Appendix:  Deriving Poisson distribution and its paameters

0 Assume average rate pfevents per second.
0 Large time interval T: expect averageuT
o Calculate probabilities to get none, one, two, éhedc. events:

» The time interval can be broken in M=T/dt smalkivials

= probability to get one event during di=pdt=pT/M

= probability of getting more than 1 is vanishingcmmparison to pat M- oo
= probability to get no events during very short tidiep=1-udt

= probability to get no events during Te=po" =(1-udt)M=(1-uT/M)M - &= ¢"
= probability to get 1 event::RC(M,1)P.Po™ Y= MIUT/M) [e/py — ne”
= probability to get k event; 2C(M,k){p) Pe™¥=....

= Cross-check: Average B+ 1P+ ... + K + ...
=Kk E" = nE@"s n“Y(k-1)! = ne"e"
=n

o RMS (root of mean squared) ﬁ (k=) =n

=S kp=YkrLe =3 T
< > el kZ:;? k! ;1 (k-1)!
=ne"> (k-1+1) n_- e"> (k1) n € ;
k=1 (k_l)' k=1 (k_l)l k:l(k_l)!
=ne" ) n——— + ne"
kZ;' (k-2)! ;(k‘l)'
=n’e€"Y — + ne"d. —=A+n

((k=n)?)=(K)~rP=rf+ n-rf= n



