Superconductivity and spin excitations in orbitally ordered FeSe

Andreas Kreisel, Brian M. Andersen
Niels Bohr Institute, University of Copenhagen, 2100 København, Denmark

Peter J. Hirschfeld
Department of Physics, University of Florida, Gainesville, FL 32611, USA

Shantanu Mukherjee
Department of Physics, State University of New York at Binghamton, Binghamton, NY, USA

Motivation: FeSe

- FeSe
 - simplest compound
 - superconducting without doping
- interesting properties
 - non-magnetic
 - nematic phase
 possibility to study origin of nematicity without presence of magnetic order
Motivation: FeSe

- **pressure experiments**

 [Graph showing pressure experiments]

 Medvedev et al. (2010) enhancement of Tc up to 37K

- **intercalation**

 Burrard-Lucas et al. 2012
 Tc → 43K molecular intercalation

- **thin films**

 [Graph showing thin films]

 ARPES gap Tc → 65K

 Transport on monolayer: Tc ~ 100K

FeSe

- ARPES: unusual band renormalization, no agreement to DFT

- pragmatic approach TB engineering
 - shifts of tight binding parameters
 - orbital order
 - site centered orbital order
 - bond centered orbital order

\[
H = H_{\text{TB}} + H_{\text{OO}},
\]

\[
H_{\text{TB}} = \sum_{k,\mu,\nu,\sigma} t_{\mu\nu}(k)c_{\mu\sigma}^\dagger(k)c_{\nu\sigma}(k),
\]

\[
H_{\text{OO}} = \Delta_s(T) \sum_{k,\sigma} [n_{x\sigma}(k) - n_{y\sigma}(k)].
\]

Maletz, et al. PRB 89, 220506(R) (2014)
FeSe: tight binding model

- ARPES

Watson et al., PRB 91, 155106 (2015); no color code

orbital order: 50 meV

T_s=87K

Shimojima, et al. PRB 90, 121111(R) (2014)

Model

Eschrig et al., Phys Rev B, 80, 104503 (2009)

+shift of hoppings
+inclusion of orbital order

10-orbital model based on:

$H_{OO} = \Delta_b g(t) \sum_{k\sigma} (\cos k_x - \cos k_y)[n_{xz\sigma}(k) + n_{yz\sigma}(k)]$

$+ \Delta_s g(t) \sum_{k\sigma} [n_{xz\sigma}(k) - n_{yz\sigma}(k)]$.
FeSe: tight binding model

- orbital order
 - bond centered OO
 - site centered OO

- sign changing orbital splitting

\[H_{OO} = \Delta_b g(t) \sum_{\mathbf{k}\sigma} (\cos k_x - \cos k_y) [n_{x\sigma}(\mathbf{k}) + n_{y\sigma}(\mathbf{k})] \]
\[+ \Delta_s g(t) \sum_{\mathbf{k}\sigma} [n_{x\sigma}(\mathbf{k}) - n_{y\sigma}(\mathbf{k})]. \]

ARPES on detwinned samples

Unidirectional bond order:
Watson et al., arXiv:1603.04545 (2016)
FeSe: tight binding model

- Quantum oscillations

 ![Quantum oscillation image](image1)

 Watson et al., PRB 91, 155106 (2015)

 ![Quantum oscillation image](image2)

 Terashima, et al. PRB 90, 144517 (2014)

 ![Quantum oscillation image](image3)

 Daniel Guterding: https://github.com/danielguterding/dhva

- **Question:** Can model electronic structure account for various other experimental results?
 - NMR: no spin-fluctuations until very low T
 - Neutron diffraction: Stripe fluctuations at intermediate energies, Neutron resonance in SC state
 - Scanning tunnelling microscopy: V-shaped DOS
 - ...
NMR: Knight shift, $1/T_1T$

orbital order visible in Knight shift

no enhanced low-energy spin fluctuations visible in NMR

\[
\frac{1}{T_1 T} = \lim_{\omega_0 \to 0} \frac{\gamma_0^2}{2 N k_B} \sum_{q \alpha \beta} |A^{q\beta}_{hf}(q)|^2 \frac{\text{Im}\{\chi^{\alpha\beta}_{RPA}(q, \omega_0)\}}{\hbar \omega_0}
\]
Spin fluctuations at higher energies

- FeSe: close to magnetic instability (tune interactions accordingly)
- transfer from Néel fluctuations to Stripe fluctuations on lowering temperature
- spin resonance at low energies from transfer of spectral weight in the superconducting state
Inelastic neutron scattering

Inelastic neutron scattering

Superconducting order parameter

• spin-fluctuation driven superconductivity

$$\frac{1}{V_G} \sum_j \int_{FS_j} dS' \Gamma(k, k') \frac{g_{\alpha}(k')}{|v_{Fj}(k')|} = \lambda_{\alpha} g_{\alpha}(k)$$

STM on FeSe: Kasahara et al. (2014)

Song et al., Science 332, 1410 (2011)
Magnetic field penetration depth

Fermi velocity (sensitive to nodes)

\[
\frac{1}{\lambda_{\nu,i}^2} = \frac{4\pi e^2}{c^2 \hbar^2} \sum_k \frac{d\xi_{\nu}(k)}{dk_i} \left(\frac{d\xi_{\nu}(k)}{dk_i} |\Delta_k|^2 - \frac{d|\Delta_k|}{dk_i} |\Delta_k| \xi_{\nu}(k) \right) \\
\times \frac{1}{E_{\nu,k}} \left(\frac{1}{E_{\nu,k}} \tanh\left(\frac{E_{\nu,k}}{2k_B T} \right) - \frac{1}{2k_B T} \text{sech}\left(\frac{E_{\nu,k}}{2k_B T} \right)^2 \right).
\]

superfluid density tensor

Linear behavior nodal in y-direction

“full gap” in x-direction \(\sim T^3\)
Summary

- model electronic structure for FeSe consistent with ARPES and quantum oscillations
- further experimental findings consistent with
 - spin-fluctuation driven superconductivity
 - absence of magnetic order, but nematic order (orbital order, origin not explained yet)
- Predictions:
 - linear T-dependence in magnetic penetration depth
 - impurity bound states: possible to model with given electronic structure

Acknowledgements:

Spin fluctuations under pressure

- Close to magnetic instability: pressure experiments

Medvedev et al. (2010)

Bendele et al. 2012: magnetic state at low pressure

enhanced spin fluctuations
Imai, Cava PRL (2009)

INS: stripe orbital order

Superconducting order parameter: stripe OO

- spin-fluctuation driven superconductivity

\[- \frac{1}{V_G} \sum_j \int_{\text{FS}_j} dS' \Gamma(k, k') \frac{g_\alpha(k')}{|v_{Fj}(k')|} = \lambda_\alpha g_\alpha(k)\]

STM on FeSe: Kasahara et al. (2014)

Song et al., Science 332, 1410 (2011)