Due date: will be discussed only in the exercise classes of week 43: Tuesday 22.10.2019 or Thursday 24.10.2019

1. Differential equations

a) Given the first order differential equation for the function $x(t)$ as

$$
\dot{x}=x^{2} .
$$

Solve this differential equation by separation of variables for two different initial conditions (1) $x(0)=1$ and (2) $x(2)=-1$.
b) Solve the inhomogeneous linear differential equation for $x(t)$

$$
\dot{x}+2 x=t
$$

using the initial condition $x(0)=0$.
Hint: Determine the general solution of the homogeneous $x_{h}(t)$ equation and find a special (particular) solution $x_{p}(t)$ to the inhomogeneous equation by making an ansatz $x_{p}(t)=$ $c(t) x_{h}(t)$ and derive a differential equation for $c(t)$.
c) Given the differential equation

$$
\dot{x}=\left(x^{2}-\lambda\right)^{2}-\lambda^{2}=f(x)
$$

for the real-valued function $x(t)$ with a real constant λ.
Find the fixed-points x^{*} of this differential equation, i.e. the stationary solutions $x(t)=x_{0}$. Distinguish between $\lambda \leq 0$ and $\lambda>0$. Draw the function $f(x)$ for $\lambda=-1$ and $\lambda=1$ and mark the fixed points for these cases. Consider the sign of $f\left(x^{*} \pm \epsilon\right)$ with a small $\epsilon>0$ to discuss in which direction $x(t)$ flows if starting with the initial conditions $x(0)=x^{*} \pm \epsilon$.

2. Potential and conservative forces

a) Given the following potential (in spherical coordinates) (r, ϑ, φ)

$$
V=E_{0}\left(1-e^{-a\left(r-r_{0}\right)}\right)^{2}-E_{0}
$$

Calculate the force \vec{F} given by this potential.
Information: The potential is called Morse potential and can be used to describe the energy of a bond in a diatomic molecule.
b) Given the following forces

- $\vec{F}=\left(a x+b y^{2}\right) \vec{e}_{x}+(a z+2 b x y) \vec{e}_{y}+\left(a y+b z^{2}\right) \vec{e}_{z}$ in cartesian coordinates (x, y, z) where a and b are constants.
- $\vec{F}=\vec{a} \times \vec{x}$ with the constant vector \vec{a}
- $\vec{F}=\vec{a}|\vec{x}|$ with the constant vector \vec{a}
- $\vec{F}=\vec{a}(\vec{a} \cdot \vec{x})$ with the constant vector \vec{a}

Check whether the force is conservative and if yes, find the corresponding potential.

3. Tautochrone problem

The parametrization of a cycloid in the (x, y) plane is given by

$$
\begin{aligned}
& x=r(\psi+\sin \psi) \\
& y=r(1-\cos \psi) .
\end{aligned}
$$

As it has been discussed in the lecture, the time for a particle to move along a cycloid under the influence of the (constant) gravitational force is stationary. Consider the case where a particle starts (at rest) at the point $(x, y)=0$ and reaches the point $(x, y)=r(\pi, 2)$ and calculate the time needed along
a) a straight line (movement of particle along inclined plane)
b) a parabola
c) the cycloid.

Hint: In the lecture, the functional

$$
J[y(x)]=\frac{1}{\sqrt{2 g}} \int_{x_{a}}^{x_{b}} d x \sqrt{\frac{1+y^{\prime 2}}{y}}
$$

was derived to calculate the time a particle takes to move along the curve $y(x)$ from $x=x_{a}$ to $x=x_{b}$. Find the functional form $y(x)$ of the straight line and parabola and calculate the integral. For the case of the cycloid, you might use the parametrization of the cycloid as a function of ψ and use the expression of the arc length $d s=\sqrt{(d x)^{2}+(d y)^{2}}$.

