TP 3: Classical Mechanics 2 and Electrodynamics 2
Sheet 1

Winter Term 2019/2020

Due date: Friday, $25.10 .2019,1 \mathrm{pm}$. Solve the exercises marked with a star* and hand in your solution into the mailbox for TP3. Prepare the other exercises at home such that you will be able to discussed these in the exercise classes of week 44: Tuesday 29.10.2019 (both groups).

1. Functional Derivative*

The functional derivative for a functional $F[f(x)]$ with respect to the function $f(y)$ can be understood as

$$
\frac{\delta F[f(x)]}{\delta f(y)}=\lim _{\epsilon \rightarrow 0} \frac{F[f(x)+\epsilon \delta(x-y)]-F[f(x)]}{\epsilon}
$$

where $\delta(x)$ is the Dirac delta function.
Mathematically, this works if the functional $F[f(x)+\epsilon \delta(x-y)]$ can be expanded as a series in leading power of ϵ.
a) Consider the functional $I[f(x)]=\int_{-1}^{1} f(x) \mathrm{d} x$ and calculate the second functional derivative

$$
\begin{equation*}
\frac{\delta^{2} I\left[f^{3}(x)\right]}{\delta f\left(x_{0}\right) \delta f\left(x_{1}\right)} \tag{1}
\end{equation*}
$$

b) Consider the functional $H[f(x)]=\int G(x, y) f(y) \mathrm{d} y$ with another function $G(x, y)$. Calculate the derivative

$$
\begin{equation*}
\frac{\delta H[f(x)]}{\delta f(z)} \tag{2}
\end{equation*}
$$

2. Extremal Work?

Show that for a given force field $\vec{F}(\vec{r})$, the work is extremal only if the force field is conservative.
Hint: The work between two points P_{1} and P_{2} is given as $W=\int_{P_{1}}^{P_{2}} \vec{F}(\vec{r}) \cdot d \vec{r}$. Formulate an equation in the language of the calculus of variation and replace the line element $d \vec{r}$ by vdt where v is the velocity such that the integral is now over the time variable. Next, use the Euler-Lagrange equations to obtain the desired result.

3. Geodesic*

a) Show that a particle subject to constraint forces (but not subject to any additional forces) has to move on curved paths which are geodesic.
A geodesic γ is the shortest path connecting two points which is consistent with the constrains. A definition of a geodesic is given by

$$
\delta \int_{\gamma} d s=0 .
$$

Note that s is the length of the space curve γ, see for example Nolting 1, chapter 1.4.3. Hint: Formulate the Hamilton principle for this problem. Explain and use $\frac{d s}{d t}=$ const.
b) Show further that for the case of a particle on a sphere, these paths are great circles. A great circle is a circle on the surface of a sphere which has as center the same point as the center of the sphere.
Hint: Consider the arc length ds for the particle on the sphere and think about how this can be minimized. Choose a suitable direction of your coordinate system for two given points on the sphere.

Note: In general relativity, the metric is defined such that the space curves of particles which move under the influence of graviation force, become geodetic lines. The movement can then be understood as force-free, and the the gravitation just induces a curved space.

