TP 3: Classical Mechanics 2 and Electrodynamics 2 Sheet 2

Winter Term 2019/2020

Due date: Friday, 01.11.2019, 1pm. Solve the exercises marked with a star^{*} and hand in your solution into the mailbox for TP3. Prepare the other exercises *at home* such that you will be able to discussed these in the exercise classes of week 45: Tuesday 05.11.2019 or Thursday 07.11.2019.

1. Spring Pendulum^{*}

In a spring pendulum, a mass m is hanging on a spring vertically in the gravitational field. Assume that the mass m can only move in the drawing plane, see figure below.

The rest length of the spring (when no forces act on it) is l.

- a) How many degrees of freedom are in this system? Explain how you came to this conclusion. Give two possible choices of generalized coordinates $\vec{q}(t)$ for this system and justify which one you are choosing.
- b) Write down the position and the velocity vector $(\vec{r} \text{ and } \dot{\vec{r}})$ using the generalized coordinates. Make a suitable choice of your coordinate system.
- c) Write down the kinetic energy T and potential energy V of the system in terms of the generalized coordinates and use the Euler-Lagrange equations to obtain the equations of motion.
- d) Solve the equations of motion for small deviations from the equilibrium postion.

2. Crane pendulum

A pendulum with length l and mass m_2 is suspended from the trolley (of mass m_1) of an overhead travelling crane which can move freely in horizontal direction. Derive the Lagrange function of this system and the equations of motion.

3. Mechanical gauge invariance of the Lagrange equations

Consider a change of the Lagrangian,

$$L'(q, \dot{q}, t) = cL(q, \dot{q}, t) + \frac{d}{dt}F(q, t),$$

where c is a constant but nonzero factor and the second term is a total time derivative of a function F = F(q, t) which only depends on q and t. Prove the statement that both Lagrange functions yield the same equations of motion by inserting $L'(q, \dot{q}, t)$

- a) directly into the Euler-Lagrange equations.
- b) into the Hamilton's principle.

Exercise sheets available at: http://www.physik.uni-leipzig.de/~kreisel/en/teach.php