TP 3: Classical Mechanics 2 and Electrodynamics 2 Sheet 10

Winter Term 2019/2020

Due date: Friday, 10.01.2020, 1pm. Solve the exercises marked with a star^{*} and hand in your solution into the mailbox for TP3. Prepare the other exercises *at home* such that you will be able to present these at the blackboard in the exercise classes of week 3: Tuesday 14.01.2020 or Thursday 16.01.2020.

1. 4-potential*

Calculate the electric field \vec{E} and the magnetic induction \vec{B} for the following 4-potentials

- a) $A^{\mu} = ax^{\mu}$, where a = const. and x^{μ} is the 4-position.
- b) $A^{\mu} = a x^{\mu} e^{-\lambda x_{\nu} x^{\nu}}$, where λ is a constant as well.
- c) $A^{\mu} = a \partial^{\mu} \theta(X)$, where θ is an arbitrary function of the 4-position X.
- d) Find the function $\theta(X)$ that corresponds to the first and second example.
- e) Given the fields

$$\vec{E}(r) = \alpha \frac{\vec{r}}{|\vec{r}^3|} \qquad \vec{B} = 0$$

Find the 4-potential A^{μ} that describes these fields. Is your choice unique?

2. Energy-momentum tensor*

- a) Show that the contraction of the energy momentum tensor $T^{\mu\nu}$ vanishes.
- b) Show that the expression $w^2 \frac{1}{c^2} |\vec{S}|^2$ is a Lorentz invariant. Here $w = \frac{1}{2} (\epsilon_0 \vec{E}^2 + \frac{1}{\mu_0} \vec{B}^2)$ is the energy density and $\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$ is the Poynting vector. Hint: Rewrite the expression in terms of known Lorentz invariants.

3. Moving electric charges

Consider a particle with electric charge q_1 that creates the potential $\varphi'(\vec{r'}) = \frac{q_1}{4\pi\epsilon_0} \frac{1}{r'}$ and $\vec{A'}(\vec{r'}) = 0$ in a system of reference Σ' where it is at rest.

a) Find the potentials $\varphi(\vec{r})$ and $\vec{A}(\vec{r})$ in a system of reference Σ which moves relative to Σ' with a velocity $\vec{v} = v\vec{e}_z$.

- b) Show that $\varphi(\vec{r})$ and $\vec{A}(\vec{r})$ fulfill the condition for Lorentz gauge. Argue in which system of reference you are conveniently showing this and why you can choose your system of reference.
- c) Now, explicitly calculate the electric field $\vec{E}(\vec{r})$ and the magnetic induction $\vec{B}(\vec{r})$ in the system of reference Σ . First show explicitly that $\vec{B} = \frac{\vec{v}}{c^2} \times \vec{E}$ and then calculate \vec{E} explicitely. (Note that the desired result for \vec{B} was not derived in the lecture, but the result just stated.)
- d) Calculate the force \vec{F} in the system of reference Σ which another particle with charge q_2 is exposed to. The second particle moves with the same velocity than the first particle. Conveniently separate the force \vec{F} into a component parallel and a component perpendicular to the z axis, $\vec{F} = \vec{F}_{\perp} + \vec{F}_{\parallel}$.

Exercise sheets available at: http://www.physik.uni-leipzig.de/~kreisel/en/teach.php