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600 CHAPTER 18 Nove! Materials

18,7 GRAPHENE
18.1.1 Introduction
Carbon has four perfect crystaltine forms: graphite, diamond, «Buckminsterfullerene” and a fuller-
ene nanotube: In addition, graphene is » one-atom-thick allotrope of carbon, which is a honeycomb
lattice of carbon atoms. Graphene also has two-dimensional Dirac-like excitations. We discussed the
properties of graphene as well as its possible applications 1 electronics in Sections 10.7 and 10.8.
In the following sections, we will discuss graphene as a building block for all novel materials of
carhon as well as derive the theory of Dirac fermions discussed in Section 10.7.

Oue can view graphite as a stack of graphene layers, and carbon nanotubes can be considered as
rolied cylinders of graphene. “Buckminsterfullerene” (Cep) can be viewed as molecules obtained by
introducing pentagons on the hexagonal lattice of wrapped graphene. These are shown in Figure 18.1.

Diamond is not shown in the diagram because it is prirarily used in making jewelry due to its
beauty and elegarnce, and it does not have any major applications in materials science, presumably.
becanse of its cost. In addition, each atom 1n diamond is surrounded in ail three directions in space
by a full coordination. Because all directions are taken up; it would be nearly impossible for an
atom in 2 diamond lattice to have any bonding with any other atom in the outside 3D space. - -

Graphene is 2 swo-dimensional (2D) allotrope of carbon that can be imagined to be benizens
rings stripped ont from the hydrogen atoms. Fullerenes are molecules where carbon AtomS AT
arranged spherically and are zero-dimensional (0D} objects that have discrete energy states. Fulle:
enes can be thought of as wrapped-up graphene because they are obtained from graphene with
introduction of pentagons, which create positive curvature defects. Carbon nanotubes, which
only hexagons and can be thought of as one-dimensional (1D) objects, are obtained by Tolli
graphene along 2 definite direction and reconnecting the carbon bonds. Graphite, which is &
dimensional (3D) allotrope of carbon, 1§
out of stacks of graphene layers that are wed
coupled by van der Waals forces. Two-dl
sjonal materials like graphene were pre
not to exist until 2004, when it was obta
liquid suspension.2 Graphene could
obtained on top of noncrystalline su
and was eventually spotied in opticaT:
scopes due to the subtle optical effects 1
it on top of an Si0, substrate. Graphen:
high crystal quality, in which charge carmie:
iravel thonsands of interatomic distances

. scattering.
FIGURE 18.1 The Coulomb interactions are
Clockwise: graphene (2D}, graphite (3D), enhanced in small geometries such a5 &
«Buckminsterfuilerene” {OD), and carbon quantum dots that lead to Coulom‘oib
nanctubes (1D). offects. The transport properties of gr E{Ph
Reproduced from Castro Neto et al.* with the permission ofthe 1o a variety of applicadons, which range 5
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. grapbene has unusual structisal and electronic flexibility, it can be tailored: deposition of metal atoms or
" motecules on top; incorporation of boron and/or nitrogen in its structure; and using different substrates
% that modify the electronic structure. The control of graphene properties can be extended in new

: directions that would aliow for the creation of graphene-based systems with magnetic and superconduct-
* ing properties. .

18.1.2 Graphene Lattice

_ Carbon has four valence electrons, three of which form tight bonds with neighboring atoms in the
plane. Their wave functions are of the form

25 (w29 +Vawtap), (=12.9), as.n

where ,(25) is the (2s) wave function for carbon, and v, (z;2p) are the (2p) wave functions of which
the axes ave in the directions 7; joining the graphite atom to 1is three neighbors in the plane. The
fourth electron is in the 2p, state. Its nodal plane is the lattice plane and its axis of symmetry perpen-
&cular to it. Because the three electrons forming coplanar bonds do not play any part in the conduc-
tivity, graphene can be counsidered to have one conduction electron In the 2p, state.

The unit cell of the hexagonal layer, designated as PORS in Figure 18.2, contains two carbdn
atoms A and B. The distance AB = a=142 A, The fundamental lattice displacements are'a; = AA’
and a; = AA", and their magnitude is a; = V3 %142 A =246 A. The reciprocal lattice vectors
have magnitude 8z/3a and are in the directions AB and AS, respectively. Hence, the first Brillonin
zone is a hexagon (see Figure 18.3) of which the sides are at a distance 4x/3a from its center. The
density of electron states in k space is 24, whére A is the area of the crystal. The zone has exactly
one electron per atom. Therefore, the first Brillouin zone of graphene has 2N electron stales, and

the second Brillouin zone is empty. As we discussed in Sections 10.7 and 10.8, it becomes a semi-
conductor at finite teinperatures.

FIGURE 18.2
Honevcomb fattice structure of graphene, made out o
of two interpenetrating triangular iatlices. The lattice FIGURE 18.3

unit vecgrsj’l and_é:g and the nearest-neighbor First Brillouin zone of the honeycomb lattice and the
vectors &1, 85, and 83. AB=a. Dirac points K and K’ at the corners.
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The lattice vectors of graphene can be written as (Figure 18.2)

3a (h_ 1 A) 3a ( 1 h)
=22 (54 —=F}; Bp=|X——x¥) 18.2
v= \/gy 2= A \/g)f (18.2)
where the carbon--carbon distance is a~1.42 A. The reciprocal lattice vectors (shown in
Figure 18.3) are given by {Problem 18.1)

by = 2 (3+V35); b= 2 (3-v3) (183)

The positions of the two Dirac points K and K’, located at the corners of the Brillouin zone (of
which the significance is to be explained later), are (Problem. 18.2)

C2fe. 1) o 2(3o L
CEpd) wEE)

The three nearest-neighbor vectors in real space are given by
—_— — M
5= 5 (xrvB)s B S(E-vE) B=—at (185

- —
The six second-nearest neighbors are located at 8] =a,, 6% = +a,, and &4 = +(a, ~a;).

1®.1.3 Tight-Binding Approximation .
Wallace (Ref. 19) developed a “fight-binding” method for the band theory of graphite. Because
spacing of the lattice planes of graphite is large (3.37 A) compared with the bexagonal spacing
the layer (1.42 A), he neglected, as a first approximation, the interactions of the plane :
assumed that conduction takes place in the layers. This is precisely graphene, which at that i1
was merely a concept. We note that some the notations bave different values in that paper, presum
ably because it was published in 1947, but these have been modernized in the present derivatio
If #{r) is the normalized orbital 2p, wave function for an isolated atom, the wave functio

tight-binding approximation has the form : )
y = ¢+,

where

1
¢, = N
and

&y = L%eﬂ”" x(rfr.;;).

VN
Here, the first sum is taken over A and ail the lattice points generated from ithb ,
translations, and the second sum is similarly over the points generated from B (Figur 2
Neglecting the overlap integrals,

]x(r — r,;)z(r —rg)dr=0,



and substituting in Eq. (18.6),
(18.10)

o Hy = Ev,
e obtain (Problem 18.3)
' Hy+AHe=E (18.11)
and
Hip+AH»m = AE. (18.12)
Here, .
HomHu= 60 bl He= oy = [0 Hasdo (18.13)
Jand
o [ o =1 (18,14
Eliminating A from Egs. (18.11) and (18.12), we obtain the secutar equation
' Hy,-E Hv \
= 18.15
\ Hy Hn—E 0. ( )
- From Eq. (18.15), is easy to show that
. . 1 .
E= 5 {Hu +Hpt ((Hu - H22)2 +4\H12\2)2}- {18.16)
Because Hiy = Has Eq. (18.16) can be rewntten in the alfernate form
E. = Hu = \Hol- (18.17
The positive sign in Eq. (18.17) wilt apply to the outside of the hexagonal Zone and the negative
sign to the inside. The discontinuity of energy across the zone boundary is
AE =2{Hp- (18.18)
From Eags. (18.7), {18.13), and (18.17), we obtain
= Ly, e [ mpem ) 4 (18.19)
vy
Keeping only the nearest-neighbor integrals among the atorns A and writing
Ey= [;(* () Hy(r) dv (18.20)
and
{18.21)

Yo = -jx* (r— 7 Hx(x) dv,
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where 7" = a;{say) is a vector joining the nearest neighbor among atoms A, we can show that
(Problem 18.4)

H,, = Ey— 27, [cos (\/gk_,.a) + 2cos(%kxa) cos ( V3 k_\.a)} . (18.22)

2

Writing

H = Hy+ (H - Hy), ©(18.23)
where Hy is the Hamiltoﬁian of an isolated carbon atom, and using

H-Hy=V-U<0, (18.24)

where U is the potential field of an isolated atom and V is the periodic petential of the lattice
becatse

Hey = Ey, (18.25),

(. is'the energy of an electron in the 2p, state in carbon), from Eas. (18.20), (18.21), (18_24),: and
(18.23), we obtain :

By =E"——/x*(r)(U—V))((r) dv (1826) :
and . -
ri= [ 0= THO=V ) dv>0

Similarly, we obtain the expression for Hiz,

Hio = 3o bt / (= r ) Hy (r—13).
AB

Consideﬁng oaly the nearest-neighbor interactions in the laitice (between atoms of type & and
B and vice versa), we write (in analogy with Eq. 18.27) -

=[x = FNU- V) >0
where
7 =AB.
It can be shown that (Problem 18.5)

Hiz =71 [e‘ik‘a + 2cos (% kya) ei@kxﬂ)}

and

ol =713 [1 +4 cosg(ﬁkya> 44 cos (%kxa) cos(—?kya)].

2
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From Eqgs. (18.22) and (18.32), we can wiile

E,(K) = Hy = Hy = Ey =73 f(K) 27613 +FE], (18.33a)

Fk) = _2[003 (V3kya) +2 cos(% xa) cos(—\/;kya)}. ' (18.33b)

The energies at the various points in the Brillouin zone can be written as

T: E = Ey— 37— 6rcr
N E= E{)+370—6}f6,
K: E = Ey+ 37 (18.34a)
M (inside): E= Eq—7vo+ 276 :
Mloutside): E = Ey+yo+275-

Across the boundary at any point over a side of the zone (Figure 18.3), there is 2 discontipuity of
epergy of amount )

%o [2 cos (e\é—ﬁkya) - 1}, | (18.34b)

which is a maximum at the center and decreases to zero at the comers. The degeneracy at K and
similar points {called Dirac points) and the zero-energy £ap at these polnts are CONSeqUENces of the

symmetry of the lattice and are independent of any approximation.
The energy contours are given by

’ 3 !
E=Eo—3r—6ro+3 (ro+6y5) (2 + K d*. (18.35)

The curves of constant energy are shown in Figure 18.4.
It may be poted that near the corners K or K' (Dirac points),

\E — Eg| :3yai%yglk—Kla— %y(’)lk—Kizaz. (18.36)
The surfaces of constant energy are circular. If

one neglects yg relative to v, Eq. (18.36) can be
rewritten near the corners of the zone,

\E~ x| = S palk — K|+ Ol{g k)

~2yalal+0i(g/K?). (183D

FIGURE 18.4

which can be rewritten in the altemnate form Curves of constant energy.

Reproduced from Wallace'® with the permission of the American

E, (CI) = Vqu\ + O[(‘?/K)Z] > (18.38) Physical Society.

l;!ia;

|




506 CHAPTER 18 Novel Meterials

where q is the momentum (in umnits h = 1) measured relatively to the Dirac ponts, and ve 18 the
Fermi velocity, . .
ve = 3yl ' (18.39)

The pumerical vaive of vpx 1X 10° m/s. From Egs. (18.30) and (18.39), we obtain
E,(q) = 3ys=velgl+ Ol(g/K)')- (18.40)

Conduction in the graphene layer will take place through the electrons excited into the upper band

and through the equal number of positive holes created in the lower band, as shown in Fgure 18.5,
For moderate tempesatures, N(E) is even in € = |[E—E «| over the whole range in which the Fermi

distribution f{F) is different from its value at absolute zero. One can write ¢ = Ex and express

FIE) =f(€) = e+ 1). ' (18.41)

It is interesting to note that the original tight-binding method, used by Wallace'? in 1947 as a first
approximation for the calculation of band structure of a single layer of graphite, is now being widely

used to study the energy bands of graphene.
The tight-binding Hamiltonian for electrons in graphene can be written in the second-quantiza-

tion form' (in units such that A = 1),
~ s o2 Coh PEIIN
fF=-1 Y @ b,+Hec)t % (@ 80+ by bjo +H.C.), (18.42)
<Lj>.o << e
where a{ﬁ(&i,ﬁ) are the creation and annihilation operators with spin ¢ {o = 1, ) on site R; on sub-
lattice A, and Ejo (b;,} ate the corresponding operators on site R; on sublattice B.
Here, t(=2.7 eV} is the nearest-neighbor hopping energy (between A and B), and ' = —0211s
the next nearest-neighbor hopping energy (between two A’s or two B’s). We note that z =y, and

1 = y{ in Wallace’s theory. ,
The electronic dispersion in the honeycomb lattice s shown in Figure 18.6, for finjte values of-

t=27eVand ' = —0.27. We also note the most striking difference between the results of Eq. (18.39) -,

and the usual case in which €(q) = °g*/2m, where m is the electron mass. In Eq. (18.39), the Fermi
velocity vy does not depend on the energy and momentum while in the usual case, v = fikfm = v 2Em,
and hence the velocity changes substantially with energy. We also note that the presence of the second-
order terms (arising due to ¢ in Eq. 18}40)__shift'$a
in energy the position of the Dirac point and

N(E)
breaks the electron-hole symimeftry.

18.1.4 Dirac Fermions

Graphene’s charge cartiers have 4 particu}iitr{yf ’
anique nature. Its charge carriers mimic relaﬁV{stlc
particles and are described starting with the Dllrac
FIGURE 18.5 equation rather than the Schrodinger equation:
The interaction of the electrons with the gra:

The form of the elecironic energy states, N(E), X -
near L. phene’s beneycomb lattice gives 15 to new

Ex E
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FIGURE 18.6

Left: Enerpy spectrum (in units of i for t=2.7eVand ' = —0.2t. Right: Close-up of the energy bands
niear to ane of the Dirac points,

Reproduced from Castro Neto et al! with the permission of the American Physical Society.

quasiparticles, which, at low energies E, afe accurately described by the (2+ 1)-dimensional Dirac equa-

tion with an effective speed of light ve = 10° m™'s™". These quasiparticles are called massless Dirac

fermions. They can be viewed as electrons thaf have lost their rest mass s, or as neutrinos that have

acquired the electron charge e. The reason the quasiparticles are known as Dirac fermions is as follows.
The Dirac equation for an electron in a periodic potential V can_be writien as

flp, = (T -7 +pm+IV)h = by, (18.43)

i E 0 __E 0
0}, ﬁ:{o _E} 1_[0 E} (18.44)

7 s the Pauli spin matrix vector, E is a 2 X 2 unif matrix, 7 is the momentum operator, m, is the rest
mass of the electron, and ¢, is a four-component Bloch function with an energy &: The suffix i sig-
nifies a set of the wave vector, band index, and spin direction and is limited to positive energy states.

Graphene is a zero-gap semiconductor, in which low-£ quasiparticles within each valley can De
described by the Dirac-like Hamiltonian '

where

: 0 Ky —iky , ,
= * = . : A5
H _th<kx+fk), 0 ) hVFG" k. (18 )

Eq. (18.43) can be approximated by Eq. (18.45) when the k-independent Fermi velocity ve plays the
role of the velocity of light ¢, 7= h—lg, and because the electrons are fermions, they are called Dirac
fermions. The honeycomb lattice is made up of two equivalent carbon sublattices A and B, and the
cosine-like energy bands associated with the sublattices intersect at zero E near the edges of the
Brillouin zone, giving rise to conical sections of the energy spectrum. The electronic states at the inter-

section of the bands are composed of states belonging to the different sublattices, and their relative
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FIGURE 18.7
A top view of (a) unit cell of monolayer graphene, showing the inequivalent atoms A and B and unit vectors
a; and ap; (b) real-space bilayer graphene in which the light-/dark-gray dots and black circles/black dots
represent the carbon atoms in the upper and lower layers; {c) the unit cell and the % and j unit veciors of
bilayer graphene; (d) the same as () for tritayer graphene; and (e) the reciprocal space unit cell showing

the first Britlouin zone with its high symmetry points.

Reproduced from Malard et a2 with the permission of Elsevier.

two-component wave functions (spinors). The index to
dospin @ because it is similar to the spin index (up and
f the electrons must be described by addi-

contributions are taken into account by using
indicate sublattices A and B is known as pseu
down) in quantim electrodynarnics (QED). The real spin 0

tional terms in the Hamiltohian. Because the QED-specific phenomena are often inversely proportional
to ¢ and because ¢/vg 2300, the pseudospin effects usually dominate over those due to the real spin,

One can __}nlroducefhe concept of chirality, which is formally a projection of & on the direction

of mg_tjon k,and is p{)gi_t)ive (negative) for electrons (holes). Chirality i graphene signifies the fact
that & electrons and — k hole states originate from the same sublattice. The concepts of chirality -

and pseudospin are important because they are conserved guantities.

18.1.5 Comprehensive View of Graphene ‘
A comprehensive view of the umit cell of monolayer, bilayer, and trifayer graphene and the .ﬁfs}
Brillonin zone with iis high symmetry points are shown in Figure 18:7. Co

18,2 FULLERENES
18.2.1 Introduction

If one forms a vapor of carbon atoms and lets them condense slowly while keeping the termperalute
e bulk of ali reactive kinetics follows

high, as the intermediate species grow, there is a path where th >
that make spheroidal fulierenes. There are two types of fullerenes that are famous for different rea-.
sons. The “Buckminsterfullerene” (Co) is the most symmetric of all possible molecules. In addiflon,
it is possible by adding a few percent of other atoms (nickel and cobalt) to trick the carbon int mak

ing tubes. The (10,10} fullerene nanotibe is the most famous nanotube. The propensity for bonding -
that causes Cg to be the end point of 30-40% of all the reactive kinetics leads to the (10,10)




- panotube. The metal atoms (nickel and cobalt) prevent the addition of
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the seventh, eighth, and ninth

pentagons, and ultimately, the growing tubelet can anneal to its most energetically favored form.

The idea that Cgp would form a stable molecule originated from Euler’s

rule stating that a solid

~figure with any even nummber #i of 24 or more vertices could be constructed with 12 pentagons and

. (n—20)/2 hexagons.

The spheroidal carbon—cage carbon molecules consisting only of pentagons

" and hexagons were given the generic name “fis]lerenes.”

18.2.2 Discovery of Ceo

. The truncated icosahedron form

of Cgp is shown in Figore 18.8. Tt was discovered by Kroto et al®

by using a SUPETrSOIC Jaser-vaporization nozzle source, as shown in Figure 18.9a.
Cqp is chemically a very stable structure. Cluster “cooking” reactions i the “integrating cup” were

~ responsible for the Cep cluster’s

nearby size range. The up- lustering reactions with

FIGURE 18.8

Truncated icosahedron Cap, popularly known as
“Buckminsterfuilerene.”
Reproduced from Curl?

with the permission of the American
Physical Society.

becoming over 50 times more intense

~degree of symmetry,

than any other cluster in the
small carbon chains and rings reacted away neatly
al} clusters except for Ceg, Which survived because
of its perfect symmetry. Ceo does not have any
dangling bonds becauvse the valences of every
carbon atom are satisfied. There is no specific
point of chemical attack because every atom 18
equivalent by symretry. While curving the intrin-
sically planar system of double bonds into a sphe-
rical shape, strain is introduced. However, this
strain is uniformly and symmetrically distributed
over the molecnle. No other stracture, has this high
and hence, the experimental
observation that carbon-vapor condensation condi-
tions could be found where the intensity of the
mass spectnm peak of the (¢ in the carbon cluster
beam was many times the intensity of any of its
pear peighbors in mass is shown in Fgure 18.9b.

Vaporization laser

T0atm

helium 3

Schematic cross-sectional drawing of the supersonic laser-vaporization nozzie source used in the discovery

of fullgrenes.
Reproduced fro

m Smalley 1 with the permission of the American Physi

cal Society.
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MWL@AWM

44 b2 60 68 76 84
Carbon atoms per cluster

FIGURE 18.9b

Intensity of The mass spectrum peak of the Cqp in the
carbon cluster beam relative to its neighbors in mass.
Reproduced from Curl? with the permission of the American

’ . Physical Sociely.

To confirm the existence of Cgg, Kroto and
coworkers’ made two pioneering NMR experi-
ments. The first experiment was done on a solu-
tion of Cg with benzene, which yielded a very
strong resonance line at 128 ppm (for benzene)
and a very tiny NMR trace in which Cg re80-
nance was identified at 143 ppm. However,

. a second experiment (Ref. 18) in which C-NMR

spectrum obtained from chromatographically
purified samples of soluble material extracted
from arc-processed graphite, yielded a spectrum of
purified Cep, 1 which a strong resonance was
obtained at 143 ppm. This result is shown in
Figure 18.10. ' '

@[

ppm
FIGURE 18.10

T

140 130

C-NMR spectrum of (a) purified Ceg {143 ppm}; (b) mixed sample; (c) purified Cpp (five lines).
Reproduced from Kroto® with the permission of the Amarican Phys

ical Sociely.
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The fullerenes have a wide variety of technological applications. An example of a fullerene-based
n-channel FET is shown in Figure 18.11. A highly doped n-type silicon wafer takes the place of the
gate metal, a ~30—300 nm thick layer of Si0, serves as the oxide, and the fullerene film serves as the

- serniconductor. ' '

When an appropriate positive gate voltage Vg is applied, the drain current I increases, which
indicates that a conduction channel is formed neat the fullerene-insulator intecface.

Another application of fullerene is in Ceg photolithography. The sequence of steps (deposition,
exposure, development, and pattern transfer) used in photolithography, in which Cgp acts as 2 nega-
tive photoresist, is shown in Figure 18.12.

One of the many important potential applications of fullerenes is the nature of the fullerenes
and metallic and semiconductor substrates. Direct rectification between solid Cgo and p-type
crystalline Si has been shown in Nb/Cogo/p-Si and Ti/Cogo/p-Si heterojunctions, which are
strongly rectifying. Because the potential barriers at the Nb-Cgp and Ti-Ceo interfaces are close to

D
{drain)

FIGURE 18.11

{a) The terminai designations and hiasting conditions for Si-based MOSFETs. G, B, B, and 5, respectively,
denote the ground, drain, base, and source. (1) The corresponding structure for the fullerane Cgp device.
Reproduced from Dresselhaus et ai3 with the permission of FElsevier.
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e

Cg; Photolithography

F— CBU

Si water

{a) Cgp deposition by thermal sublimation

(c) Negative developing

bobd

{d) Postprocess etching

F_FL_!_U—_U—LJ—LJ]

{e) Removai of Cgp in solvents

FIGURE 18.12
Sequence of steps of Cgg photolithography.

Reproduced from Dresselhaus et 213 with the permission of Elsevie
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Nb or Ti

g

Al ohmic conta

FIGURE 18.13

schematic cross-section of an ND/Ceo/p-Si structure used as a hetercjunction diode.

Reproduced frofi Dresselhaus et al.® with the permission of Eisevier.

zero, it is the Ceofp-Si interface that is responsible for the strong rectifying properties of

the heterostructure. A schematic cross-section of the Nb/Cgofp-Si interface is shown in
Figure 18.13.

18.3 FULLERENES AND TUBULES
18.3.1 Introduction '

The fullerene nanotube (10,10} mentioned in the
introduction of the previous section. with one
end open, is shown in Fig. 18.14. The (10,10}
tube is formed because the metal atoms frustrate
~ the ability of the open edge to curve in and’
close. The addition of the seventh, eighth, and
ninth pentagons is prevented, and by appropriate
choice of temperature and reaction rate, the
growing tubelet can anneal to its most energeti-
cally favored form.

The closed end is & hemifullerene dome (one
half of Casg), whereas the other end is left open.
These ends are directly amenable {0 the forma-
tion of excellent C-O, C-N, or C-C covalent
bonds to attach any molecule, enzyme, mem-
brane, or surface to the end of the tube. If two
objects A and B are attached to the two ends,
they will communicate with each other by
metallic transport along the fube. Thus, the FIGURE 18.14

FAGURE 1844
(10,10) tube is a metallic wave guide for  Section of a (10,10) fullerene nanotube with ong end

electrons. open.
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1232 Carhon Nanotubeles

It is convenient to specify a general carbon nanotubule in terms of the tubule diameter d; and the

chiral angle 8, which are shown in Figure 18.15 as the rectangle bounded by the chiral vector QA

or Cp. The chiral vector

. Ch = Fi&) + mas (1846)

is defined on the honeycomb lattice by unit vectors & and a,. €, connects two crystallographically
equivalent sites O and A on a two-dimensional graphene sheet where a carbon atorn is located at
each vertex of the honeycomb structure. Figure 18.15 shows the chiral angle & of the nanotube with
respect to the zigzag direction (8 = Q) and the unit vectors &, and a, of the hexagonal honeycomb
lattice. The armchair tubule (Figure 18.16a) corresponds to 9 = 30° on this construction. An ensem-
ble of chiral vectors can be specified by Eq.' (18.46) in terms of pairs of integers (n,m), and this
ensemble is shown in Figure 18.17. Each pair of integers {n,m) defines a different set of rolling the -
graphene sheet to form a carbon nanotube. o
Along the zigzag axis & = 0°. Also shown in the figure is the basic translation vector OB=Tof

the 1D tubule unit cell, and the rotation angle and the translation ¢, which constitute the basic |
symmeiry operation R = (y|7). The integers (n, m) uniquely determine the tubular diameter d, and 8.

The diagram is constructed for (r,m) = (4, 2).

18,3.3 Three Types of Carbon
Nanotubes

When the two ends of the vector C,, are sup:
imposed, the cylinder connecting the two b
spherical caps of Figure 18.16 is formed. The
line AB' (in Figure 18.15) is joined to the p
lel Tine OB, where the lines OB and AB' are p
pendicular to the vectors Cy at each end. Th
are no distortions of the bond angles
.’ chiral tbile except the distortions caused:

. ’1. ‘@5‘. the cylindrical curvature of the tubul_e-. Diff
. ‘b’l‘ 6‘0 @ ences in the tubular diameter 4, give rise

(P 3= el ) ‘£ :
. oo..@.eé. differences in the various properties of carbon:

: napotubes. The vectors {n,0) denote ZigZag:

)

’ ____, W«—-’” ' tubules, and the vectors (n,n) denote- halt:
S tubules. The larger the value of n, the Jager- .
FIGURE 18.15 the tubule diameter. The (n,0) and {r,n)

The 2D graphene sheet is shown along with the high symmetry and exhibit a mirror sy

vector that specifies the chiral nanotube. plane normal to the tubular axis. The othet ¥
Reproduced from Dresselfouse et al.* with the permission tors {n,m) correspond to chiral I_lalﬂ ;
of Eisevier.  Because both right- and left-handed chirality
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FIGURE 18.16

Three types of nanotubes ohtained by roliing a grapheng sheet into a cylinder and capping each end of the
cylinder with half of a fullerene molecule; a ufylterene-derived fubule™ that is one atornic layer in thickness
i formed: {a) 8 =30° {an armchair tubule); {0} 8= 0 (a) zZigzag tubule; and (¢) chiral tubtde.

Raproduced from Drasseihaus et al.* with the permission of Elsevier.

possible for chiral nanotubes, the chiral tubules are optically active to either right- 0T feft-circularly
polarized light propagating along the tubule ‘axis.
The tubular diameter d, is given by

4, = Cyfz = Vaccln’ +mn+ n*) Pz, (18.47)

where gc.c 1s the nearest-neighbor C-C distance, Cy is the iengih of the chiral vector a,, and the
chiral angle @ is given by

0 = tan~ ! |v/3mfm =+ 2n))- (18.48)

The three types of carbon nanotubes are shown in Figuge 18.16.

Figure 18.17 shows the number of distinct caps that can be formed theoretically from pentagons
and hexagons, such that each cap fits continuously onto the cylinder of the tubule, specified by 2
given {1, m) pair. It shows that the hemispheres of Cg are the smaliest caps that satisfy these

requirements, 80 that the smallest carbon nanotube is expected o be 7 A, which is in agreement
with the experiment. Figure 18.17 also shows that the aumber of possible caps increases rapidly

with increasing tubular diameter. Below each pair of Integers (n,m) is listed the number of distinct

caps that can be joined continuously to fhe cylindrical carbon ibule denoted by (71, 7)-

Due to the point group symmetry of the honeycomb lattice, severat values of {7, m) will give
rise to equivalent nanotubes. Therefore, one restricts consideration t0 the napotubes arising from the
20° wedge of the 3D Bravais lattice showa in Figure 18.17. Because the length-to-diameter ratio. of
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FIGURE 18.17

The 2D graphene sheet that specifies the chiral nanotube.
Reproduced from Dresseltiaus et al.* with the permission of Eisevier.

carbon nanotubes is >10° while the diameter is only ~10 Z\, carbon nanotubes are an importint
system for studying one-dimensional physics.

18.2.4 Symmetry Properties of Carbon Nanotubes

To study the properties of carbon nanotubes as 1D systems, we define the lattice vector T along the.
tubule axis nommal to the chiral vector Cj, defined in Eq. (18.46) and Figure 18.15. The vector T
defines the unit cell of the 1D carbon narotube. The length T of the translation vector T corre
sponds to the first lattice point of the 2D graphene sheet through which the vector T passes. Thu
we obtain from Figure 18.15 and these definitions :

T = [(2m+n)a; — (2n +m)ay) /dz,

with a length

T = +/3C, fd. {1830
The length Cy, is defined in Eq. (18.47). Defining  as the highest common divisor of {n,m), :

have

do = d if n— m is not a multiple of 34
™\ 3d if n—m is a multiple of 3d.

The relation between the fundamental symmetry vector R = pa; +ga, of the 1D unit cell andﬂ'l
two vectors that specify the carbon nanotube {(n,m), the chiral vector C,, and transiation vector
are shown in Figure 18.18.
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FIGURE 18,18
Relation between R, C, and T

Reproduced from Dresselhaus et al.® with the permission of

Elsevier.

Band structure of the (10,10) tubs

—27/3

-n/3

ka
FIGURE 18.19

Band structure of a {10,10) fullerene nanotube,
caiculated by Dresselhaus et al., using zone folding
from the band structure of an infinite 20 graphene
sheet.

Reproduced from Dresselhaus et al. (Ref. 3) with the permission

of Efsevier.
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The projection of R on the C; and T axes
yields  and z. X in the figure is  scaled by

Ch/ZJ’C

18.5.5 Band Structure of a Fullerene
Nanotube

The electronic band structure of a (IO,iDj fuller-
ene nanotube was first calculated by Dresselhaus
et al.® by using tight-binding methods and by
using zone folding from the band strocture of an
infinite 2D graphene sheet. Their results are
shown in Figure 18.19. -

As one can see in Figure 18.19, the two
bands that cross the Fermi energy at ka = —2x/3
have different symmetry and guarantee that the
tube will be a metallic conductor.

18.4 POLYMERS
18.4.1 Introduction

A long chain of molecules that has a backbone
of carbon atoms is known as a polymer. The
basic building block, which usually but not
necessarily consists of one carbon atom and two
hydrogen atoms, is known as a MOROIMET.
A polymer is formed by repeating the structure
of the monomer over and over again. In fact, a
single polymer can be constituted from several
thousand monomers.

Materials corposed from polymers, such as
bone, wood, skin, and fibers, have been used
by man since prehistoric times. However, polymer
science was developed in the twentieth century
by Hermann Staudinger, who developed the

concept of macromolecules in the 1920s. Wallace Carothers showed the great industrial poten-
tial of synthetic polymers and invented nylon in 1935. Synthetic polymers are now used in
large quantities in a variety of applications. In the 1950s, Ziegler and Natta discovered polymer-
ization catalysts, which led to the development of the modem plastics industry. Some of the
most popularly known pelymers are rubber, plastic, and Tefion. They do not have any common
property other than the fact that they are lightweight, flexible, resistant to corrosion, and easy to







