--> Matchev's
Home Page

University of Florida | Department of Physics

--> Homework

--> Final projects

--> Class diary

--> References

PHZ 7359 - Standard Model II
Spring Term 2016

Time and Place: MWF Period 3 (9:35-10:25), 1216 New Physics Building (NPB).

Final Exam: The final exam will be in class on April 22. A list of final projects can be found under the link "Final Projects".

Instructor:  Konstantin Matchev

Office: 2055 NPB 
Phone:  392-5709 
Secretary: None
Email:  matchev@ufl.edu 

Office hours:Experience shows that there is no point assigning official office hours. If you need help just drop by my office.

There is no required textbook for this course. We may sometimes refer to the textbook adopted for the QFT course Michael E. Peskin and Daniel V. Schroeder, An Introduction to Quantum Field Theory (Westview Press). There are also identical older printings by another publisher, Addison-Wesley. The authors keep a list of known typos. A list of other quantum field theory books can be found under the "References" link on the left. It is useful to order the free pocket version of the Particle Data Book (i.e. the Particle Physics Booklet).

A laptop running linux or unix which you can bring to class and work on during the tutorials. Some knowledge of QFT and Feynman rules. Some knowledge of computer programming.

The course provides an introduction to modern collider physics phenomenology at a level accessible to both theory and experimental graduate students. It assumes only limited knowledge of basic elementary particle physics at the level of, say, PHZ 4390. The main objective of the course is to prepare the students for interpreting the wealth of Tevatron and LHC data, emphasizing both the experimental realities as well as the methods for the discovery of new physics. In addition to the Standard Model, the course will introduce the leading candidates for new physics beyond the Standard Model, including new gauge dynamics, supersymmetry, extra dimensions, etc. We will review the main motivation behind each one, identify the salient features and discuss the methods for discovery and identification at colliders. The course will also provide some unique hands-on experience with the most widely used software simulation tools in particle phenomenology, e.g. event generators, detector simulators, automated parton-level calculation programs, NLO calculators, RGE programs, etc. Time permitting, we shall also discuss theories of dark matter, methods for its direct and indirect detection, and the corresponding software tools.

Strong interactions, perturbation study of quantum chromodynamics (QCD) of quarks and gluons. Chiral description of long-range QCD, supersymmetric extensions of standard model, grand unification

There will be less than one homework assignment per week. You may collaborate with others on the problems, but you must make a note of your collaborators (just as if you were writing a scientific paper). Noting your collaborators does not in any way detract from your grade. The homework assignments will typically require performing a lot of calculations on a computer.

There will be midterm and final exams (in class). There will also be a final project for each student.

The final grade will be based on exam scores (50%), the homework assignments (30%) and final prohect presentation and class participation (20%). The course grades are not curved.

Holidays (no classes):
MLK Day (January 19), Spring Break (February 28 - March 7).

Last modified: 5 January 2016