We add two real scalar fields, ϕ^1 and ϕ^2. They are singlets under all SM
gauge groups. Their mass terms are\n\[L_{s.m.} = -\frac{m_1^2}{2} \phi_1^2 - \frac{m_2^2}{2} \phi_2^2 - m_{12}^2 \phi_1 \phi_2. \]
(1)
We will call mass eigenstates Φ_1 and Φ_2, and their eigenmasses M_1 and M_2, respectively, and we will assume that $M_1 < M_2$.
We add two Dirac fermion fields, U and E. Their SM quantum numbers
are those of the SM u_R and e_R, respectively. These fields have mass terms
\[L_{f.m.} = M_U \bar{U} U + M_E \bar{E} E. \]
(2)
They interact with scalars via
\[L_{\text{Yuk}} = \lambda_1 \phi_1 \bar{U} P_R u + \lambda_2 \phi_2 \bar{U} P_R u + \lambda'_1 \phi_1 \bar{E} P_R e + \lambda'_2 \phi_2 \bar{E} P_R e, \]
(3)
where u and e are the SM up-quark and electron fields. Note that there is a
Z_2 symmetry under which all fields we added ($\phi_{1,2}$, U, E) flip sign, while all
SM fields do not, so the new particles must be pair-produced and the lightest
new particle (LNP) is stable. This same Z_2 also forbids $U - u$ and $E - e$
mixing via Yukawas with the SM Higgs.
We will assume the following ordering of masses:
\[M_U > M_2 > M_L > M_1, \]
(4)
so that Φ_1 is the LNP. Not having any SM interactions, it appears as MET
in the detector. The goal of the tutorial is to simulate the process
\[pp \rightarrow \bar{U} U, \]
(5)
at a 8 TeV LHC, and the subsequent U decays:
\[U \rightarrow u \Phi_1, \]
(6)
\[U \rightarrow u \Phi_2, \Phi_2 \rightarrow e E, \ E \rightarrow e \Phi_1. \]
(7)

\footnote{All Lagrangian parameters, here and below, are assumed to be real}