We add two real scalar fields, ϕ^1 and ϕ^2 . They are singlets under all SM gauge groups. Their mass terms are¹:

$$\mathcal{L}_{\text{s.m.}} = -\frac{m_1^2}{2}\phi_1^2 - \frac{m_2^2}{2}\phi_2^2 - m_{12}^2\phi_1\phi_2.$$
 (1)

We will call mass eigenstates Φ_1 and Φ_2 , and their eigenmasses M_1 and M_2 , respectively, and we will assume that $M_1 < M_2$.

We add two Dirac fermion fields, U and E. Their SM quantum numbers are those of the SM u_R and e_R , respectively. These fields have mass terms

$$\mathcal{L}_{\text{f.m.}} = M_U \bar{U} U + M_E \bar{E} E \,. \tag{2}$$

They interact with scalars via

$$\mathcal{L}_{\text{Yuk}} = \lambda_1 \phi_1 \bar{U} P_R u + \lambda_2 \phi_2 \bar{U} P_R u + \lambda_1' \phi_1 \bar{E} P_R e + \lambda_2' \phi_2 \bar{E} P_R e , \qquad (3)$$

where u and e are the SM up-quark and electron fields. Note that there is a \mathcal{Z}_2 symmetry under which all fields we added $(\phi_{1,2}, U, E)$ flip sign, while all SM fields do not, so the new particles must be pair-produced and the lightest new particle (LNP) is stable. This same \mathcal{Z}_2 also forbids U - u and E - e mixing via Yukawas with the SM Higgs.

We will assume the following ordering of masses:

$$M_U > M_2 > M_L > M_1$$
, (4)

so that Φ_1 is the LNP. Not having any SM interactions, it appears as MET in the detector. The goal of the tutorial is to simulate the process

$$pp \to \bar{U}U$$
, (5)

at a 8 TeV LHC, and the subsequent U decays:

$$U \rightarrow u\Phi_1,$$
 (6)

$$U \rightarrow u\Phi_2, \quad \Phi_2 \rightarrow eE, \quad E \rightarrow e\Phi_1.$$
 (7)

¹All Lagrangian parameters, here and below, are assumed to be real