Physics 4222 Mechanics 2

Spring Term 2024-Exam 3

Name: \qquad UFID: \qquad

This is a 50 minute closed book exam consisting of twenty multiple choice questions. Each question is worth 1 point, so the maximum number of points on this test is 20 . The exam is closed book, and no calculators or other electronic devices will be allowed. There is no penalty for wrong answers, so it is in your best interest to provide answers to all questions. If more than one answer appears plausible, choose the best one.

Useful formulas and equations (Chapters 11, 14, 15 and 16)

$$
\begin{aligned}
& \mathbf{M} \ddot{\mathbf{q}}=-\mathbf{K q} \quad T=\frac{1}{2} \sum_{i, j} M_{i j} \dot{q}_{i} \dot{q}_{j} \quad U=\frac{1}{2} \sum_{i, j} K_{i j} q_{i} q_{j} \quad\left(\mathbf{K}-\omega^{2} \mathbf{M}\right) \mathbf{a}=0 \\
& N_{s c}=N_{\text {inc }} n_{t a r} \sigma_{s c} \quad N_{s c}(\text { into } d \Omega)=N_{\text {inc }} n_{\text {tar }} \frac{d \sigma}{d \Omega}(\theta, \phi) d \Omega \\
& \theta=\pi-2 \int_{r_{\text {min }}}^{\infty} \frac{\left(b / r^{2}\right) d r}{\sqrt{1-(b / r)^{2}-U(r) / E}} \\
& \frac{d \sigma}{d \Omega}=\frac{b}{\sin \theta}\left|\frac{d b}{d \theta}\right| \quad \frac{d \sigma}{d \Omega}=\left(\frac{k q Q}{4 E \sin ^{2}(\theta / 2)}\right)^{2} \\
& \frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} \quad c=\sqrt{\frac{T}{\mu}} \quad u(x, t)=f(x-c t)+g(x+c t) \\
& u(0, t)=u(L, t)=0 \quad u_{n}(x, t)=A_{n} \sin \left(k_{n} x\right) \cos \left(w_{n} t-\delta\right) \quad k_{n}=n \frac{\pi}{L} \quad \omega_{n}=n \frac{\pi c}{L} \\
& \frac{\partial^{2} p}{\partial t^{2}}=c^{2} \nabla^{2} p \quad \nabla=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \quad p=f(\mathbf{n} \cdot \mathbf{r}-c t) \quad p=\cos [k(\mathbf{n} \cdot \mathbf{r}-c t)] \\
& \frac{\partial^{2} p}{\partial t^{2}}=c^{2} \frac{1}{r} \frac{\partial^{2}}{\partial r^{2}}(r p) \quad p(r, t)=\frac{1}{r}[f(r-c t)+g(r+c t)] \\
& x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(x, y, z, c t) \quad x \cdot y=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}-x_{4} y_{4} \quad q^{\prime}=\Lambda q \\
& \Lambda=\left[\begin{array}{cccc}
\gamma & 0 & 0 & -\gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma \beta & 0 & 0 & \gamma
\end{array}\right] \quad \gamma=\frac{1}{\sqrt{1-\beta^{2}}}=\frac{1}{\sqrt{1-v^{2} / c^{2}}}
\end{aligned}
$$

Light cone at point Q : all points P such that $\left(x_{P}-x_{Q}\right)^{2}=0$
$p=\left(\mathbf{p}, \frac{E}{c}\right) \quad E^{2}=\left(m c^{2}\right)^{2}+(\mathbf{p} c)^{2}$

Useful formulas and equations (Chapters 8, 9, 10, 12 and 13)

$$
\begin{aligned}
& \mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{2} \quad M=m_{1}+m_{2} \quad \mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \quad \mu r^{2} \dot{\phi}=\mathrm{const}=\ell \quad F_{\mathrm{cf}}=\mu r \dot{\phi}^{2} \\
& U_{\text {eff }}(r)=U(r)+U_{\text {cf }}(r)=U(r)+\frac{\ell^{2}}{2 \mu r^{2}} \quad u=\frac{1}{r} \quad u^{\prime \prime}(\phi)=-u(\phi)-\frac{\mu}{\ell^{2} u(\phi)^{2}} F \\
& F=\frac{G m_{1} m_{2}}{r^{2}}=\frac{\gamma}{r^{2}} \quad r(\phi)=\frac{c}{1+\epsilon \cos \phi} \quad c=\frac{\ell^{2}}{\gamma \mu} \quad a=\frac{c}{1-\epsilon^{2}} \quad b=\frac{c}{\sqrt{1-\epsilon^{2}}} \\
& d=a \epsilon \quad E=\frac{\gamma^{2} \mu}{2 \ell^{2}}\left(\epsilon^{2}-1\right) \quad \tau^{2}=4 \pi^{2} \frac{a^{3} \mu}{\gamma} \quad v_{2}=\lambda v_{1} \quad \epsilon_{2}=\lambda^{2} \epsilon_{1}+\lambda^{2}-1 \\
& \ddot{\phi}+2 \beta \dot{\phi}+\omega_{0}^{2} \sin \phi=\gamma \omega_{0}^{2} \cos \omega t \quad \gamma=\frac{F_{0}}{m g} \quad x_{t+1}=r x_{t}\left(1-x_{t}\right) \\
& p_{i}=\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \quad \mathcal{H}=\sum_{i=1}^{n} p_{i} \dot{q}_{i}-\mathcal{L} \quad \dot{q}_{i}=\frac{\partial \mathcal{H}}{\partial p_{i}} \quad \dot{p}_{i}=-\frac{\partial \mathcal{H}}{\partial q_{i}} \\
& m \ddot{\mathbf{r}}=\mathbf{F}+\mathbf{F}_{\text {inertial }} \quad \mathbf{F}_{\text {inertial }}=-m \mathbf{A} \quad \boldsymbol{\omega}=\omega \mathbf{u} \quad \boldsymbol{v}=\boldsymbol{\omega} \times \mathbf{r} \\
& \left(\frac{d \mathbf{Q}}{d t}\right)_{S_{0}}=\left(\frac{d \mathbf{Q}}{d t}\right)_{S}+\boldsymbol{\Omega} \times \mathbf{Q} \quad m \ddot{\mathbf{r}}=\mathbf{F}+\mathbf{F}_{\text {cor }}+\mathbf{F}_{\mathrm{cf}} \\
& \mathbf{F}_{\text {cor }}=2 m \dot{\mathbf{r}} \times \boldsymbol{\Omega} \quad \mathbf{F}_{\text {cf }}=m(\boldsymbol{\Omega} \times \mathbf{r}) \times \boldsymbol{\Omega} \quad \mathbf{g}=\mathbf{g}_{0}+(\boldsymbol{\Omega} \times \mathbf{R}) \times \boldsymbol{\Omega} \\
& \mathbf{L}=\mathbf{L}(\text { motion of } \mathrm{CM})+\mathbf{L}(\text { motion relative to } \mathrm{CM}) \\
& T=T(\text { motion of } \mathrm{CM})+T(\text { motion relative to } \mathrm{CM}) \\
& \mathbf{L}=\mathbf{I} \boldsymbol{\omega} \quad I_{x x}=\sum_{\alpha} m_{\alpha}\left(y_{\alpha}^{2}+z_{\alpha}^{2}\right), \text { etc. } \quad I_{x y}=-\sum_{\alpha} m_{\alpha} x_{\alpha} y_{\alpha}, \text { etc. } \\
& \mathbf{L}=\lambda \boldsymbol{\omega} \quad \mathbf{I}^{\prime}=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right]
\end{aligned}
$$

Useful formulas and equations (Chapters $1,2,3,4,5,6,7$)

$\mathbf{r} \cdot \mathbf{s}=r s \cos \theta=r_{x} s_{x}+r_{y} s_{y}+r_{z} s_{z}$
$\mathbf{r} \times \mathbf{s}=\left(r_{y} s_{z}-r_{z} s_{y}, r_{z} s_{x}-r_{x} s_{z}, r_{x} s_{y}-r_{y} s_{x}\right) \quad|\mathbf{r} \times \mathbf{s}|=r s \sin \theta$
Cartesian $(x, y, z): \quad F_{x}=m \ddot{x} \quad F_{y}=m \ddot{y} \quad F_{z}=m \ddot{z}$
2D Polar $(r, \phi): \quad F_{r}=m\left(\ddot{r}-r \dot{\phi}^{2}\right) \quad F_{\phi}=m(r \ddot{\phi}+2 \dot{r} \dot{\phi})$
Cylindrical Polar $(\rho, \phi, z): \quad F_{\rho}=m\left(\ddot{\rho}-\rho \dot{\phi}^{2}\right) \quad F_{\phi}=m(\rho \ddot{\phi}+2 \dot{\rho} \dot{\phi}) \quad F_{z}=m \ddot{z}$
$\mathbf{f}=-f(v) \hat{\mathbf{v}} \quad f(v)=f_{\text {lin }}+f_{\text {quad }} \quad f_{\text {lin }}=b v=\beta D v \quad f_{\text {quad }}=c v^{2}=\gamma D^{2} v^{2}$
$\beta=1.6 \times 10^{-4} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2} \quad \gamma=0.25 \mathrm{~N} \cdot \mathrm{~s}^{2} / \mathrm{m}^{4} \quad m \dot{v}=-\dot{m} v_{e x}+F^{e x t}$
$\mathbf{F}=q(\mathbf{E}+\mathbf{v} \times \mathbf{B}) \quad \mathbf{R}=\frac{1}{M} \sum_{\alpha=1}^{N} m_{\alpha} \mathbf{r}_{\alpha}=\frac{m_{1} \mathbf{r}_{1}+m_{2} \mathbf{r}_{2}+\ldots+m_{N} \mathbf{r}_{N}}{m_{1}+m_{2}+\ldots+m_{N}}$
$\vec{\ell}=\vec{r} \times \vec{p} \quad \mathbf{L}=\sum_{\alpha=1}^{N} \vec{\ell}_{\alpha}=\sum_{\alpha=1}^{N} \vec{r}_{\alpha} \times \vec{p}_{\alpha} \quad \dot{\mathbf{L}}=\boldsymbol{\Gamma}^{e x t}$
$\Delta T \equiv T_{2}-T_{1}=\int_{1}^{2} \mathbf{F} \cdot d \mathbf{r} \equiv W(1 \rightarrow 2) \quad U(\mathbf{r})=-W\left(\mathbf{r}_{0} \rightarrow \mathbf{r}\right)=-\int_{\mathbf{r}_{0}}^{\mathbf{r}} \mathbf{F}\left(\mathbf{r}^{\prime}\right) \cdot d \mathbf{r}^{\prime}$
$\mathbf{F}=-\nabla U \quad E=T+U_{1}+U_{2}+\ldots+U_{n} \quad \mathbf{F}(\mathbf{r})=f(\mathbf{r}) \hat{\mathbf{r}}$
$U=U^{\text {int }}+U^{e x t}=\sum_{\alpha} \sum_{\beta>\alpha} U_{\alpha \beta}+\sum_{\alpha} U_{\alpha}^{e x t} \quad($ net force on $\alpha)=-\nabla_{\alpha} U \quad T+U=$ const
$F=-k x \Longleftrightarrow U=\frac{1}{2} k x^{2} \quad \ddot{x}=-\omega^{2} x \Longleftrightarrow x(t)=A \cos (\omega t-\delta)$
$\ddot{x}+2 \beta \dot{x}+\omega_{0}^{2} x=0 \leftrightarrow x(t)=A e^{-\beta t} \cos \left(\omega_{1} t-\delta\right) ; \beta=\frac{b}{2 m} ; \omega_{0}=\sqrt{\frac{k}{m}} ; \omega_{1}=\sqrt{\omega_{0}^{2}-\beta^{2}}$
with $F(t)=m f_{0} \cos (\omega t) \Longleftrightarrow x(t)=A \cos (\omega t-\delta)$ (long term solution)
$A^{2}=\frac{f_{0}^{2}}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+4 \beta^{2} \omega^{2}} \quad \tan \delta=\frac{2 \beta \omega}{\omega_{0}^{2}-\omega^{2}} \quad \omega_{2}=\sqrt{\omega_{0}^{2}-2 \beta^{2}}$
Extremal $S=\int_{u_{1}}^{u_{2}} f\left[x(u), y(u), x^{\prime}(u), y^{\prime}(u), u\right] d u \Longleftrightarrow \frac{\partial f}{\partial x}=\frac{d}{d u} \frac{\partial f}{\partial x^{\prime}}, \quad \frac{\partial f}{\partial y}=\frac{d}{d u} \frac{\partial f}{\partial y^{\prime}}$ $\mathcal{L}=T-U \quad \frac{\partial \mathcal{L}}{\partial q_{i}}=\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \quad p_{i}=\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \quad \mathcal{H}=\sum_{i=1}^{n} p_{i} \dot{q}_{i}-\mathcal{L}$

