Konstantin Matchev

University of Florida

In collaboration with:

H.-C. Cheng and M. Schmaltz
Phys. Rev. D66, 036005 (2002), hep-ph/0204342;
Phys. Rev. D66, 056006 (2002), hep-ph/0205314
H.-C. Cheng and J. Feng
Phys. Rev. Lett. 89, 211301 (2002), hep-ph/0207125

Arlington Linear Collider Workshop, University of Texas at Arlington, January 10, 2003

Outline

- What is the model? (BS)
 - MUEDs (Minimal Universal Extra DimensionS)
- Collider phenomenology
 - What is the spectrum? Tree level? Radiative corrections?
 - What are the allowed decays?
 - How big are the cross-sections?
 - How do we discover it at the Tevatron and the LHC?
- Can we tell it from SUSY?
- Kaluza-Klein dark matter
 - Relic density
 - Direct detection
 - Indirect detection: neutrinos, positrons, photons.

Universal Extra Dimensions

- UEDs: everybody in the bulk! Appelquist, Cheng, Dobrescu hep-ph/0012100
- Motivation: EWSB, proton decay, N_{gen}, neutrinos... Appelquist, Arkani-Hamed, Cheng, Dobrescu, Hall, Ponton, Poppitz, Yee
- The minimal model: d = 4 + 1, ED compactified on S^1/Z_2 .
- Symmetries
 - Z_2 identify opposite points on the circle. Can be used to project out unwanted zero modes no branes!
 - KK number due to 5d momentum conservation. New interactions localized on the fixed points break KK number down to KK parity: (-1)ⁿ
 ⇒ Lightest KK Particle is stable. (Dark Matter?)
- The minimal model is very predictive: $\{R, \Lambda, m_h\}$
- Current constraints exclude $R^{-1} \lesssim 300$ GeV, possibly less, depending on m_h .

agents!

Radiative corrections?

• If 5d Lorentz invariance were exact, the KK masses would be fixed by the dispersion relation

$$E^{2} = \vec{p}^{2} + p_{5}^{2} + m_{0}^{2} = \vec{p}^{2} + \left(\frac{n}{R}\right)^{2} + m_{0}^{2}$$

and the KK mass splittings would only depend on the m_0 's.

• For example, consider a scalar field:

 $\mathcal{L} \supset Z \partial_{\mu} \phi \, \partial^{\mu} \phi - Z_5 \partial_5 \phi \, \partial_5 \phi, \quad \mu = 0, 1, 2, 3 ,$

and 5d Lorentz invariance requires $Z = Z_5$, hence the $\frac{n}{R}$ term stays uncorrected.

- 5d Lorentz breaking effects modify this conclusion.
- What are the possible 5d Lorentz violating effects?

"Bulk" radiative corrections

• 5d Lorentz invariance is broken at long distances by the compactification. ⇒ Loops with nonzero winding number wrapping around the

extra dimension would know about the compactification:

"Boundary" radiative corrections

• There can be local interactions on the boundaries which also break 5d Lorentz invariance. In fact, radiative corrections from bulk interactions do generate terms localized on the boundaries, e.g.

$$\frac{\delta(x_5) + \delta(x_5 - \pi R)}{\Lambda} \ G_4(\mu) \ F_{\mu\nu}^2$$

Georgi, Grant, Hailu hep-ph/0012379

• The corresponding corrections to the KK masses are proportional to $\frac{n}{R}$ and log enhanced:

$$\bar{\delta}m_n \sim m_n \ln\left(\frac{\Lambda^2}{\mu^2}\right)$$

• The "boundary" corrections are larger than the "bulk" corrections and involve many new parameters... What about predictivity???

• The usual approach: parameterize our ignorance.

• MUEDs (Minimal Universal Extra DimensionS): the boundary terms vanish at the scale Λ .

• Putting the two effects together:

• The colored KK particles are the heaviest, followed by SU(2) multiplets etc.

- KK gluon: $B(g_1 \rightarrow Q_1 Q_0) \simeq B(g_1 \rightarrow q_1 q_0) \simeq 0.5.$
- Singlet KK quarks (q):
 - $B(q_1 \to Z_1 q_0) \simeq \sin^2 \theta_1 \sim 10^{-2} 10^{-3}$ $B(q_1 \to \gamma_1 q_0) \simeq \cos^2 \theta_1 \sim 1$

• KK W- and Z-bosons: only leptonic decays!

$$B(W_1^{\pm} \to \nu_1 L_0^{\pm}) = B(W_1^{\pm} \to L_1^{\pm} \nu_0) = 1/6$$
$$B(Z_1 \to \nu_1 \nu_0) \simeq B(Z_1 \to L_1^{\pm} L_0^{\mp}) \simeq 1/6$$

• KK leptons: 100% directly to the LKP.

Level 1 Branching Fractions

and the

• Arises from inclusive Q_1Q_1 production:

$$Q_1 \to Z_1 \to \ell^{\pm} \ell^{\mp} \gamma_1$$

- Triggers
 - Single lepton $p_T(\ell) > 20$ GeV, $\eta(e) < 2.0$, $\eta(\mu) < 1.5$.
 - Missing energy $\not\!\!\!E_T > 40$ GeV.
- Cuts
 - $p_T(\ell) > \{15, 10, 10, 5\}$ GeV, $|\eta(\ell)| < 2.5$.
 - $E_T > 30$ GeV.
 - Invariant mass of OS, SF leptons: $|m_{\ell\ell} M_Z| > 10$ GeV, $m_{\ell\ell} > 10$ GeV.

• $B(Q_1 \to 2\ell \not\!\!\!E_T + X) \sim \frac{1}{9}$. In principle, channels with W_1 's can also be used – less leptons, but more often.

• Other channels with larger statistics may give better reach (especially at the Tevatron).

• We did not optimize cuts.

UED or SUSY?

• Similarities between SUSY and the first KK level:

- Superpartners versus KK modes
- Couplings to SM particles

• Differences

- Spins ("bosonic supersymmetry")
- Absence of "Heavy Higgses" in MUEDs
- No *D*-term splittings
- Higher KK levels! Is this distinctive enough?
- How does a linear collider help?

Can you prove SUSY at the LHC?

• Yes. Tenth Conference on String Phenomenology in 2011. J.Ellis hep-ph/0208109

Second KK level

• KK fermions: $f_2 \to V_1 f_1$ or $f_2 \to V_2 f_0$ (also $f_2 \to f'_2 W^{\pm}$). Same for scalars. See level 1 KK searches.

• KK gauge bosons: $V_2 \to f_1 \bar{f}_1, V_2 \to f_2 \bar{f}_0$, but also $V_2 \to f_0 \bar{f}_0$.

• KK2 pair production + KK number violating decays \Rightarrow dilepton/dijet bumps at high inv. mass + large $\not\!\!E_T$ + soft stuff.

• KK2 single production + KK number violating decays \Rightarrow similar to Z', W' searches.

KK dark matter detection

• Direct detection: promising. (Similar to SUSY models with small sfermion–LSP mass splitting.)

- Indirect detection
 - Neutrinos: promising. Hard E_{ν} spectrum.
 - Positrons: promising. Narrow peak at large E_{e^+} .
 - Photons: promising. Hard γ spectrum.
- Can DM experiments help in determining the LKP spin?

• The signals are enhanced by the proximity to the *s*-channel resonance: $\left(1 + \frac{1}{2}\right)^{2}$

$$\sigma \sim \left(\frac{1}{m_{q^1} - m_{B^1}}\right)^2$$

Unnatural in SUSY - guaranteed here.

- Constructive interference: lower bound!
- Conservative calculation: ignoring heavy quarks.

MSSM Direct Detection

• Compare to the rates predicted in supersymmetry

• Spin-independent cross-sections for the 13 benchmark points of Battaglia et al. hep-ph/0106204.

MSSM Direct Detection

• Spin-dependent cross-sections for the 13 benchmark points of Battaglia et al. hep-ph/0106204.

• Far below sensitivity of near-term future experiments.

KKDM Indirect Detection: Neutrinos

• Neutrinos from B^1B^1 annihilations in the core of the Sun/Earth may convert near the detector (neutrino telescope) into muons:

$$\begin{split} \Phi^{\odot}_{\mu} &= 2.54 \times 10^{-17} \text{ km}^{-2} \text{yr}^{-1} \left[\frac{\Gamma_A}{\text{s}^{-1}} \right] \left[\frac{m_{B^1}}{1 \text{ TeV}} \right]^2 \\ &\times \sum_{i=\nu,\bar{\nu}} a_i b_i \sum_F B_F \langle N z^2 \rangle_{F,i} , \end{split}$$

• The annihilation rate Γ_A is determined by the balance between capture and annihilation. In equilibrium $\Gamma_A = \frac{1}{2}C^{\odot}$

$$\frac{C^{\odot}}{1.3 \times 10^{22} \text{ s}^{-1}} = \left[\frac{\rho}{0.3 \text{ GeV/cm}^3}\right] \left[\frac{1 \text{ TeV}}{m_{B^1}}\right] \\ \times \left[\frac{\sigma_{spin}}{10^{-4} \text{ pb}}\right] \left[\frac{270 \text{ km/s}}{\bar{v}}\right] S\left(\frac{m_{B^1}}{m_p}\right) ,$$

• The flux is proportional to the second moment of the neutrino energy spectrum:

$$\langle Nz^2 \rangle_{F,i} \equiv \frac{1}{E_{in}^2} \int_{E_{th}^{\nu}}^{\infty} \left(\frac{dN}{dE}\right)_{F,i} (E, E_{in}) E^2 dE$$

• Expectations in supersymmetry:

• Enhanced signals in the focus point region (E,F) due to $\chi\chi \to WW, ZZ$.

KKDM Indirect Detection: Positrons

• Both the shape and the normalization of the background are uncertain:

- Unless you see a bump, it is difficult to tell...
- It is easier to see a bump at high E_{e^+} .
- AMS-II will be able to measure high- p_T positrons!

KKDM Indirect Detection: Positrons

• Annihilation into fermion pairs is **not** helicity suppressed.

$$B(B^1B^1 \to e^+e^-) = 20\%$$

• There is a bump! The positrons are monoenergetic at birth. Some smearing from propagation through the galaxy.

• The signal is typically a small fraction of the background, and the shape is not very characteristic.

KKDM Indirect Detection: Photons - I

• Hard photons from dark matter annihilation in the galactic centre.

$$\Phi_{\gamma}(E_{th}) = 5.6 \times 10^{-12} \text{ cm}^{-2} \text{ s}^{-1} \bar{J}(\Delta \Omega) \Delta \Omega$$
$$\times \left[\frac{1 \text{ TeV}}{m_{B^1}}\right]^2 \sum_{q} \frac{\langle \sigma_{qq} v \rangle}{\text{pb}} \int_{E_{th}}^{m_B^1} dE \frac{dN_{\gamma}^q}{dE} .$$

Manufactor

KKDM Indirect Detection: Photons - II

• Reach of two representative experiments: low and high threshold.

• The signals may be further enhanced by halo clumpiness.

Conclusions and Outlook

- UEDs have a rich phenomenology which for a long time went unnoticed.
- KK particles cascade-decay promptly to the LKP, which is neutral and stable \Rightarrow the generic collider signature is $\not\!\!E_T$.
- The LHC can probe R^{-1} up to ~ 1.5 TeV in multilepton channels. Other channels? Beyond MUEDs? Broken KK parity? Macesanu,McMullen,Nandi hep-ph/0207269
- KK level 1 looks just like supersymmetry!
 - How do we tell the difference? (challenge for Tevatron and LHC experimentalists...)
 - Can we make sense of KK level 2 if we see it?
- The role of a linear collider in all of this?
- A 1 TeV LKP is a good dark matter candidate and offers excellent opportunities for detection.
- DM experiments may provide valuable clues in discriminating b/n bosonic and fermionic extra dimensions.