PHZ 5354     LECTURES Textbook chapters (Martin&Shaw) Textbook chapters (Perkins)
             
  Introduction    
             
  Lecture 1 1 Units. Standard Model. Timeline of 20th century. Questions within and beyond SM.  1.1.0 1.2.1,1.2.3
  Lecture 2 2 Where it all began: discovery of e, p, n, photon.     
             
  Main theoretical concepts    
             
  Lecture 3 3 Relativistic kinematics. Appendix A 1.1.3
  Lecture 4 4 Quantum Mechanics.   1.3, 1.5
  Lecture 5 5 Perturbation theory. Matrix element. Phase space. Cross section. Lifetime. Breit-Weigner formula. Appendix B 2.10, 2.11
  Lecture 6 6 Relativistic Quantum Mechanics. Antimatter. Discovery of positron, anti-proton. 1.2.0-2 1.4
  Lecture 7 7 Forces via particle exchange. EM force and photons. Feynman diagrams. Four fundamental forces.  1.1.0, 1.3.1-3, 2.2.0 1.2.2, 2.4-2.9
             
  Experimental techniques    
             
  Lecture 17 8 Cosmic Rays. First accelerators: Cockcroft+Walton, Van de Graff, cyclotrons, synchrotrons. 3.1.0-1 11.1.*
  Lecture 18 9 New wave of  accelerators: strong focusing, electron and hadron colliders, summary. 3.1.2-3 11.2
  Lecture 19 10 Interaction of particles with matter: charged particles (dE/dx, scintillation, Cherenkov, transition radiation) 3.2.0, 3.2.2, 3.3.4 11.5.1-4
  Lecture 20 11 Interaction of particles with matter: hadron showers, EM showers, photon interactions 3.2.0-1, 3.2.3-4, 3.3.5  
  Lecture 21 12 Detectors: tracking; particle momentum; fast response (timing) 1.2.2, 3.3.0-3 11.6
  Lecture 22 13 Detectors: energy; particle identification techniques 3.3.0, 3.3.4-5 11.7
  Lecture 23 14 Two examples of contemporary experiments: CDF, CMS 3.4.2  
  Lecture 24 15 Experimentalist basics: signal/background, trigger and cuts, statistical and systematic errors    
             
  Discovery of constituents of matter and fundamental forces    
             
  Lecture 8 16 Search for Yukawa particle. Discovery of muon, pion, neutral pion. 1.4.1-3, 2.1.2 2.2,2.3
  Lecture 9 17 Neutrino: hypothesis, discovery. Antineutrino. Lepton numbers. 2.1.1  
  Lecture 10 18 Muon neutrino. Tau-lepton. Tau-lepton neutrino. Lepton universality. 2.1.2-3 7.2
  Lecture 11 19 Strange particles. Resonances. 2.2.2, 2.2.4, 5.3.* 2.11
  Lecture 12 20 Sakata model. 8-fold way. Three quarks. Three colors. 2.2.6, 6.3.0 4.4, 6.1
  Lecture 13 21 Are the quarks real? 2.2.0-1 4.8
  Lecture   22 Visionaries: "discovery" of QED, QCD, ElectroWeak theories; more quarks? Discovery of g, W, Z. 9.1.* 7.11, 7.12, 7.13, 8.3
  Lecture 14 23 More quarks: c, b, t. Are there more generations? 2.2.4, 6.1.2, 8.3.* 4.1.1, 4.1.2, 4.13
             
  Role of symmetries    
             
  Lecture 15 24 Symmetries, conservation laws and quantum numbers: dt, dx, dphi; P, C, T, CPT, q, B, L, I. 2.2.2, 4.*, 5.1.0-5.2.4, App. D 3.*
  Lecture 16 25 Symmetries, cont'd same same
             
  Three forces in the Standard Model    
             
  Lecture 25 26 Electromagnetic force: charge, photons, loops, renormalization, running alpha, g-2   2.6, 6.5 (+ 5.*)
  Lecture 26 27 Strong force: color charges, gluons, "seeing" gluons, color abacus 6.3.*, 7.1.0 6.1, 6.4
  Lecture 27 28 Strong force: running alpha_s, V(r) at large distances, confinement, non-perturbative QCD 6.1.3, 6.3.1, 7.1.1 (+7.2.*-7.4.*) 6.3, 6.5
  Lecture 28 29 Strong force: V(r) at small distances and asymptotic freedom 6.1.3-7.1.2 6.2
  Lecture 29 30 Strong force: Quark-Gluon Plasma   6.7
  Lecture 30 31 Weak force: CC, P-violation (K- and beta-decays). K0-anti-K0 mixing. Strangeness oscillations. Ks regeneration. 8.2.*, 10.1.*, 10.2.*, 10.2.4-5 7.5, 7.15
  Lecture 31 32 Weak force: discovery of CP-violation, indirect and direct CP-violation, evidence for indirect CP-violation. 10.2.3 7.16, 7.17
  Lecture 32 33 Weak force: quark mixing (GIM, CKM), K-, D-, B-, Bs-oscillations. 8.3.1 7.14, 7.18
  Lecture 33 34 Weak force: CKM parameters and CP violation. Role of B-mesons. B-factories. CP-violation in B-mesons.   7.18
  Lecture #REF! 35 Electro-Weak unification: Gauge invariance principle. Problem of masses. Higgs mechanism. 9.2.*, Appendix C 8.12
  Lecture #REF! 36 Electro-Weak unification: where is the Higgs boson? 9.2.3 8.13
             
  Neutrino revised    
             
  Lecture #REF! 37 Dirac or Majorana? Mass? Lepton sector mixing and neutrino oscillations?  11.1.* 9.6, 9.7
  Lecture #REF! 38 Experimental evidence for neutrino oscillations and implications.    
             
  Beyond the Standard Model    
             
  Lecture #REF! 39 GUT, proton decay, leptoquark searches, monopole searches. 11.2.* 9.2, 9.8
  Lecture #REF! 40 SUSY, search for SUSY particles, WIMPs 11.3.* 9.1, 9.4
  Lecture #REF! 41 Strings. Extra dimensions. Micro black holes.   9.9
             
  Experimental cosmology    
             
  Lecture 42 42 Cosmological constant, dark matter and dark energy, ultra high energy cosmic rays, gravitational waves, etc. 11.4.* 10.7