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Recently we proposed that the anomalous diffusion at short length scales associated with
localization is responsible for the unusual sensitivity of the high-T, superconductors to dis-
order. We showed that the Coulomb pseudopotential in superconductors is a universal
function of p/p., where p is the resistivity and p, is a critical resistivity characteristic of the
system, and obtained relatively small values of p. from the experimental T,-vs-p curves. In
the present paper we show that in the strong-disorder region in three dimensions the density
of states is also a universal function of the same parameter, so that in the absence of any mi-
croscopic calculation of p., a comparison of the density of states and T, as function of dis-
order provides a crucial test of the theory. We find very good agreement with existing data
on granular Al. We also find that the density of states has a logarithmic energy dependence
in this region, a result independently obtained by Lee. In addition, we make quantitative
predictions about where and when to expect this logarithmic correction to be important, and
comment on why it has not been observed yet.
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I. INTRODUCTION

According to the scaling theory of localization!
the conductance g of a system of size L is described
by a universal function B(g)=d Ing/dInL. For large
g, B(g) can be expanded in powers of 1/g where the
leading correction comes from the so-called “maxi-
mally crossed” diagrams and to a reasonably good
approximation it can be assumed to be given by
B(g)=1—g./g in three dimensions (3D) even near
the critical conductance g.,. The conductivity
o(L)=g(L)/L is then given by o(L)=0+g./L
where o0 =0() is the macroscopic conductivity, so
that up to a length scale Ly =pg, determined by the
disorder of the system characterized by its resistivity
p, the conductivity and hence the diffusion coeffi-
cient goes roughly as //L, where [ is the mean free
path. For strong enough disorder, L, >>/, this re-
gion of scale-dependent diffusion associated with lo-
calization becomes significant. We have recently
shown? that this anomalous diffusion at short length
scales gives rise to a highly retarded Coulomb in-
teraction which in turn increases the Coulomb pseu-
dopotential in a strongly disordered superconductor
considerably. We proposed that this phenomenon is
responsible for the unusual sensitivity of the high-T
superconductors to disorder.

In the present paper we calculate the change in
the density of states as a function of disorder due to
the scale-dependent diffusion associated with locali-
zation.!”? We find that in the strong-disorder regime
the density of states is a universal function of p/p,
where p is the resistivity and p, =1I/g, is the critical
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resistivity characteristic of the system. A micro-
scopic calculation of p, for strongly interacting sys-
tems is not yet possible, and values obtained for p,
by fitting the T,-vs-p curves of high-T, supercon-
ductors were found? to be relatively small compared
to the estimated free-electron value,! ~103 Qcm
(for I ~5 A). Several suggestions were made in Ref.
2 regarding the cause of this renormalization, and
our expression (12) for the density of states as a
function of p/p, provides an independent way of es-
timating this important localization parameter from
tunneling experiments, and hence is a crucial test of
the theory. We also find that the well-known VE
dependence in 3D for small energy E relative to the
Fermi energy crosses over to a logarithmic energy
dependence for larger E in the strong-disorder re-
gime. This result has been independently obtained
by Lee. In addition, our explicit resistivity depen-
dence allows us to make quantitative predictions
about the degree of disorder and the crossover ener-
gy beyond which this logarithmic behavior should
be observable.

II. DENSITY OF STATES

In terms of the exact eigenstate ;(T) of the disor-
dered system, the impurity-averaged self-energy
3(E) of an electron of energy E is given by*

0
S(E)=— [ dE'FEE;T,Tw(f—7"), (1)
where
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F(E,E";T,T")= X 8(E—E;)3(E'—E;)
ij

XY EWS(E ) (T

(2)

and v(T—T"') is the Coulomb interaction. Assuming
that F(E,E';T,T') can be expected to have the form
FE —E';T—T"), quite generally, Eq. (1) for the
self-energy becomes

0 . '
XE)=— [__dE' [ dFdr'die!E-EN
X | (T | (F-T1),

(3)
where the quantity

|§(T,7",0) | 2= 3 ¢ (DY} (T)
ij

i(E;—E)t

X (F)y(Pe " ETE" (4

can be identified either with the density-density
correlation function* with frequency w=E; —E j» OF
simply with the probability function of a wave pack-
et’

—iEt

H(r—Tit)= zlﬁ?(f’)llzi(i")e

set up at T=T7" at t=0. In either case it can be ex-
pected to have a diffusive behavior given by

|¢(—>—~rt)|2___e~$r—r | /4Dt/Q(t) (5)

where Q(¢) is the normalization factor and D is the
diffusion coefficient. Finally, the short-range
Coulomb interaction v(T—T"') can be approximated
by a 8 function V_8(r—T') without much loss in
generality. So the Coulomb self-energy becomes

0 . ’
S(E)=—N,V, f_wdE’fdte'(E_E */Q(t) .

(6)
The change in the density of states will be given by
02(E)
SN(E)= .
(E) Y

As noted in Ref. 2, a scale-dependent diffusion
coefficient forces the normalization factor Q(¢) to
behave very differently at short time scales. Howev-
er, to calculate the change in the density of states we
need a smooth function for D(r) in contrast to the
nonsmooth function used there. Here we use the
following function for D(r) which has all the ap-
propriate limits, namely D(r)=Dyl/Lg;, r>>L,
D(r)=Dyl/r, r <<Lg, and D(r)=D, for L;=I for

allr>1I:

0l L,—1

The normalization factor Q (¢) is then determined by
demanding

1= f dvd(¥—Vpt)+—— f drrle—r/4p(nt

Q()
(®)

The integral

r3

4Dyt (Ly—1+r)/L;

I= flwdrrzexp —

9)
of Eq. (8) can be reduced to
2 -
== __ t —z/‘r(t)
3 [ " ] %
T(t) f dz zf (cz)e =*/MV (10)
where

z=r3(Ly—1)/2(Ly—1+r),
Yt)=2Dylt(L;—1)/L, ,
zo=z(r=I), ¢=[2/3(L,—D}*,
and
YW=y [1+VT=p) P+ (1-VT=p)'].

It turns out that without much error we can use the
large-y limit for yf(y) for all y, and set the lower
limit of the integral equal to zero. In this simple
limit we obtain a continuous function for Q(¢),

L1 S 32
Q(t)~4m |2Dylt + (5 )04Dylt /L)

(11)

Thus the anomalous term linear in ¢ becomes dom-
inating at short time scales given by t < (L,/D*r/3m
for Ly >>1.

It is now straightforward to calculate the change
in the density of states. We get

ON(E)
0

=aIn(1+VE7/b), (12)

where

a=037/2)uo/p» /(1—p. /p) ,

b=3m(p./p)*/(1—p./p)?,
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pe=1/8., and uy=N,V,. Note that Eq. (12) is valid
only for p>p. where localization effects start
becoming important. For weaker disorder where
there is no anomalous diffusion region, L;=I, and
we must set p=p,.

We now examine the following various limiting
cases of expression (12) for SN(E)/N.

(i) Weak disorder: In this region, ppl/ >>1. There
is no localization effect (Ly=I) and resistivity is
determined by the mean free path of the system.
This is the Altshuler-Aronov region.® In this region,
Eq. (12) becomes SN(E)/Ny~V' E /A where

A=(8EF/37T‘U%)(pF”3

so that A~1/p>.

(ii) Intermediate disorder: In this region, the
mean free path is already of the order of the lattice
spacing and cannot change any further, prl/ ~2. On
the other hand, effects associated with localization
just start to become important, i.e., p > p. in this re-
gion. As long as p./p remains comparable to 1, b
remains large compared to 1 and we can expand the
logarithm. To leading order in V E7/b, we again
have SN(E)/Ny~V E /A where now

A=(8Ep/3mud)prl)(p. /p)* .

Note that pgl is now a constant with further increase
in disorder but A still goes as 1/p’.

(iii) Strong disorder: This is the region where
p>>p. so that b << 1. However, sufficiently close to
the Fermi energy one always has a range of E for
which VE7T/b <<1, and so we always get vVE
behavior for small enough E. For a given disorder
(fixed a and b), the density of states N(E) crosses
over from VE dependence to logarithmic depen-
dence on E in accordance with Lee. The crossover
occurs around

Er=3mlp,/p)*/(1—p./p)* .

For the A15 compounds and the rare-earth
borides with high superconducting transition tem-
perature,” p/p. can easily be ~5 so that E7 (cross-
over) ~0.1. However, a logarithmic energy depen-
dence, or at least a deviation from vE dependence,
should be evident even much before ET~0.1. Thus,
tunneling experiments on these systems, if done over
a wide range of bias voltages, should be able to
determine the importance of the effects of nonclassi-
cal diffusion associated with localization. Note that
the density of states is a universal function of p/p..
It was found in Ref. 2 that the superconducting
transition temperature T, of a strongly disordered
superconductor is also a function of the same
parameter. Since there is only one unknown quanti-
ty pc, experimental results on N(E) will be an in-

dependent crucial test for the validity of the theory
of universal degradation of T, proposed in Ref. 2.

III. CRITICAL RESISTIVITY:
GRANULAR ALUMINUM

Dynes and Garno’ measured the tunneling density
of states N(E) as a function of energy E in granular
Al. They seem to find a V'E dependence for all the
samples they studied. However, the range of bias
voltage probed for their most disordered sample,
e.g., is only ~10~% V, in which a logarithmic
c\l}ep_endence may be difficult to distinguish from a

E dependence. It is, however, interesting to note
that for p> p, the density of states has the form

N(E)~No{1+[E/A(p)]'?},

so that we can compare our A(p=p.) with their
data and estimate p. for granular Al. [Note that A
is defined by SN(E)/No=VE /A so that according
to our results it can be defined only for p > p. where
it goes as 1/p® and their plot of A(p) vs p cannot be
meaningfully compared for p>>p..] From our ex-
pression for A in the region prl~2, p>p. [region
(i), and wusing 7 '~Ep~3 eV we get
Alp=p.)~2X 10> eV. There is no experimental
point corresponding to values of A> 10 eV, but a
1/p* line through the nearest available points gives
as a rough estimate a value of p, > 10~* Qcm. This
is the point where localization effects start becoming
important and according to Ref. 2 should be reflect-
ed in the superconducting transition temperature
T,.-versus-resistivity measurements. In particular
the theory predicts that the superconducting T,
should decrease in a universal fashion with increas-
ing resistivity starting from p=p,. It is found
indeed that the initial increase in T, with resistivity
in granular Al is arrested at p~10~* Qcm and for
p>1073 Qcm, T, decreases with increasing p in the
universal fashion proposed. Considering the crude
approximations used, this agreement is quite re-
markable. Note that the mechanism for the initial
increase in T, is not yet known; the present analysis
shows that the decrease is due to localization effects,
the plateau being probably due to competition be-
tween the two mechanisms.

IV. CONCLUSION

In conclusion, we have calculated the change in
the density of states as a function of disorder. Itis a
universal function of p/p, and provides an indepen-
dent way of estimating the localization parameter
pc- This provides a crucial test for the theory of
universal degradation of superconducting T, we pro-
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posed in an earlier paper. The existing data on
granular Al yields good agreement with our theory.
We should mention here that p, for granular Al
turns out to be close to the free-electron estimate.
Tunneling data on, e.g., the A15 compounds (which
are expected to have much smaller p.), would be
very interesting to compare with. Also the crossover
to a logarithmic energy dependence should be ob-
servable in both granular Al and the 415 materials.
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