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We show that the calculation of the Bohm-Aharonov effect in disordered systems by
Al’tshuler, Aronov, and Spivak can be simply explained in terms of first-order degenerate
perturbation theory. We find that the conductivity varies periodically with half a flux quan-
tum in both one- and two-dimensional geometries.

PACS numbers: 71.30.+h, 71.50.+t, 71.55.Jv, 72.15.Gd

The prediction by Al’tshuler, Aronov, and
Spivak! of a Bohm-Aharonov effect in highly disor-
dered systems has generated much interest because
of its two suprising differences from what is expect-
ed to occur in clean metals.? First, it predicts an in-
terference effect that increases with increasing dis-
order. This is believed to be the result of some
kind of ‘‘coherent backscattering’’ associated with
localization. Second, the period of oscillation in the
conductivity as a function of the magnetic flux
turns out to be given by ¢ = ¢o/2= hc/2e (where h
is Planck’s constant, c is the velocity of light, and e
is the electronic charge) in contrast to the usual
periodicity of one flux quantum, ¢, These predic-
tions are derived from consideration of the maxi-
mally crossed diagrams. However, a simple physi-
cal picture of these surprising results has not yet
emerged although the periodicity with half a flux
quantum has been observed experimentally by
Sharvin and Sharvin® and by Ladan and Maurer,*
and more complex behavior has recently been seen
by several other groups.”® The maximally crossed
diagrams in zero magnetic field have a striking
resemblance to the Cooper-pair propagator in su-
perconductivity (it has been suggested that they be
called ““Cooperons’’’). The magnetoresistance con-
tribution calculated® from these diagrams also in-
volves Landau orbits of electrons with charge 2e.
Thus these diagrams seem to suggest a kind of
““pairing”> whose origin remains mysterious.’ It is
not apparent how the size, geometry, and dimen-
sionality of the system influence the effect or to
what extent disorder plays a role in finding a charge
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2e. What is the physical interpretation of the
Al’tshuler, Aronov, and Spivak calculation?

In this paper we will give a very simple and
transparent explanation of the effect including the
role of dimensionality and disorder. We show that
the oscillations in the conductivity as a function of
flux originate from the degeneracies of several
eigenstates in the ordered system. In two dimen-
sions these degeneracies occur not only at ¢/¢y=0
and 1 but also at other values of ¢ including
¢/do=~. The degeneracies at ¢/¢o=0, +, and 1
are special cases in the sense that an increase in dis-
order destroys the oscillation at those values more
slowly than at all other values of ¢. Thus an oscil-
lation with period ¢(/2 would show up with increas-
ing disorder.

An easy way to see the basic physics of the
phenomenon is to look at a simple example in one
dimension. We will then extend our calculations to
the more complicated case of two dimensions. We
start with a chain of atoms in a circle with a magnet-
ic field penetrating the loop. The Schrddinger
equation is

1
2m

where m is the electron mass, 4 (x) is the vector
potential associated with the field, ¥ (x) is the po-
tential, and E is the eigenvalue. In order to simplify
our calculations we have worked with a discrete
gauge-invariant Schrédinger equation on a lattice of
N points:

2
k d e +V(x)

P4 _ 4% V(x)=E¥(x),

idx ¢

+V,¥,=EV¥,,

where ¥, and V, are the wave function and potential on site n, respectively, a is the distance between sites,
and A4, ,_ is the vector potential between sites n and n — 1. It is clear that this equaion has the two required
properties. As one takes the continuum limit (¢ — 0) it reduces to the original Schrodinger equation and if
one replaces A, 41, by Ap+1n+ (Xy4+1—A,)/a the wave function is changed only by a phase factor. We
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have chosen to work in the singular gauge where all 4, ,=0 except 4, 5. This corresponds to placing the
entire vector potential on the link between the first site and the Nth site (which is next to the first one be-
cause it is in a ring). The problem thus reduces to diagonalizing the matrix

2+ V), -1 0 —exp(i2md/dg)
-1 24V, -1 .- 0
0 -1 2+V; - 0
—exp(—i2md/py) 0 0 2+ Vy

where we have used the units #%/2ma?=1. In order
to calculate a quantity related to the conductivity of
the system we have chosen to study the participa-
tion ratio, P=[3N_,|¥,[*]17!. This has physical
relevance for telling how extended or how localized
the wave function is. It is also approximately relat-
ed to the quantum correction to the conductivity,®
8o, in highly disordered samples'®%: 8o« — P71
We first examine the solutions of this equation
on a completely ordered system (V,=0 for all n).
We can see immediately what will happen. For the
ordered case all states can be chosen to be extended
(traveling) waves with P=N. However, at
&/bo=0, %, and 1 there are degeneracies. This is
the key to the effect. At those values, because of
the degeneracy, we can also choose the wave func-
tions to be standing waves which will have a much
smaller value of the participation ratio. Varying ¢
infinitesimally away from 0, ¢¢/2, or ¢ will give a
discontinuous jump in the value of P. Clearly for
the perfectly ordered case we could also have
chosen states such that the P was a continuous
function of ¢. However, when one considers how
even a small amount of disorder will perturb the
system and break the degeneracies we see that the
choice of standing waves is the natural one for this
problem. One way of seeing this is to look at the
matrix that we are diagonalizing. When the flux is
0, ¢o/2, or ¢, the matrix is completely real and the
nondegenerate states of such a Hermitian matrix
can likewise always be chosen to be real (i.e., stand-
ing waves). Thus as soon as the disorder lifts the
degeneracy we get standing-wave solutions for
these values of ¢ and therefore a low value for P.
As the disorder increases, the structure in P at
these flux values become smoother. For very large
values of disorder where the localization length of a
wave function is much smaller than the size of the
ring, the effect will completely disappear. This can
be seen since we could then have chosen a gauge
where all the vector potential is placed along a link
where the wave function does not exist. Changing
the flux would then not perturb the wave function

' appreciably. The participation ratio for each indivi-
dual level is not strictly periodic with flux ¢¢/2.
However, it can be easily shown that in large sys-
tems, when the ensemble average of the participa-
tion ratio is taken, this function does indeed have
the periodicity of a half flux quantum. We have
shown this both numerically by averaging over dif-
ferent systems with the same statistical disorder and
analytically from arguments based on symmetry
considerations. These results will be presented else-
where.!!

The astonishing thing about our calculation is
that we should observe the charge-2e Bohm-
Aharonov effect in an arbitrarily small system (for
example three sites) with an arbitrarily small
amount of disorder. In Fig. 1 we show what hap-
pens for a three-site system. Figure 1(a) shows the
three eigenvalues as a function of ¢ in the case of
zero disorder. Figure 1(b) shows the participation
ratio for the three states when there is disorder (V,
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FIG. 1. (a) The eigenvalues vs ¢/¢, for a three-site
ring with no disorder. (b) The participation ratio vs ¢/¢g
for the three states of a three-site system with
—2< V,<0. (c) The participation ratio vs ¢/¢¢ for the
intermediate state of the three-site system with varying
amounts of disorder: AV =0, 1, 2, 8, and 16. (d) The
participation ratio vs ¢/¢, for a state in a 32-site system
with AV =1.
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random with —2< ¥, <0). Figure 1(c) shows
how P of the intermediate state varies as the
amount of disorder increases. For zero disorder
there are delta function spikes which gradually
broaden and then disappear as disorder is increased.
We have seen the same effects for all the other
one-dimensional systems studied. Figure 1(d)
shows the participation ratio versus ¢/¢, for a 32-
site problem with —1<V,<0 (ie., AV=1).
Clearly for the same amount of disorder a small sys-
tem will show a larger effect than one with more
sites since the localization length of the wave func-
tion can be smaller than the size of the ring for the
larger system. Although we have only shown that
this effect occurs numerically for relatively small
systems, it is clear that our arguments are applicable
to a ring of any size as long as the localization
length is sufficiently large. In arbitrarily large rings,
the energy bands are qualitatively similar to those
of the three-site system. In particular for the pure
case, they are degenerate at ¢/¢y=0, —;, and 1. As
in the three-site system only the highest and lowest
levels will not have this feature.

If we now turn to a two-dimensional calculation,
it might seem, at first glance, that the effect will get
completely destroyed. In a two-dimensional surface
there are many more degeneracies than in a one-
dimensional ring. This can be seen in Fig. 2(a)
where we show the eigenstates for a cylinder made
up of four circular rings each with four atoms (for a
total of sixteen sites). Each site is connected to its
four neighbors (two on the same ring and one each
for the two neighboring rings). We have used here
periodic boundary conditions so that the top ring is
also connected to the bottom one in a torus
geometry. All the results we show here, however,
are independent of the boundary conditions we
used. There are many degeneracies occurring at
points other than ¢/¢o=0, 5, and 1. If we com-
pute the participation ratio when there is a very
small amount of disorder there is no longer only
structure at flux 0 and ¢¢/2 but rather there is a
much more complicated variation with ¢. This is
seen in Fig. 2(b) where we show P for two different
states with AV =1. (These are the two curves with
the larger amount of structure.) However, if we in-
crease the amount of disorder the dips at 0 and ¢¢/2
remain while the other structures disappear! This is
also shown in Fig. 2(b) for AV =4. (These are the
smooth curves.) Again after averaging over many
different ensembles we see that we recover the
Bohm-Aharonov effect with charge 2e.

This, too, can be easily understood. As we men-
tioned above, by appropriately choosing the gauge
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FIG. 2. (a) The eigenvalues vs ¢/¢o for a two-
dimensional cylinder made up of four rings with four
sites each and with no disorder. (b) The participation ra-
tio for two states in the four-by-four cylinder with
AV =1 and AV =4. The upper two curves, which corre-
spond to the same state with different amounts of disor-
der, have been displaced vertically by eight units for clar-
ity.

the matrix can be made totally real at ¢/¢o=0, +,
or 1 and thus the wave function will be standing
waves. Even though there are degeneracies at other
values of ¢, the matrix cannot be made totally real
at those points and the nondegenerate wave func-
tions will have some traveling-wave component. In
particular, as we increase the disorder, the degen-
erate states will not only split from each other but
will have wave functions which are at different en-
ergies mixed into them. At ¢/¢po=0, 5, or 1 these
other wave functions are also standing waves and
they do not increase the participation ratio greatly.
However, at other values of ¢, the wave functions
which are mixed into the formerly degenerate ones
are extended traveling waves and will increase the
value of P compared to its value at ¢/¢py=0, %, and
1. Thus we see that the effect is regained in the
two-dimensional case because a gauge transforma-
tion can always be performed to make the wave
functions into standing waves at ¢/¢¢=0, %, and 1
but not otherwise.

Thus we conclude that in a one-dimensional ring
the amplitude of the charge-2e Bohm-Aharonov ef-
fect seen in the participation ratio becomes stronger
as the disorder is decreased. In two dimensions the
cleanest signal occurs at some intermediate value of
disorder and is weaker when the system is too close
to localization and much more complicated when
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the system is too well ordered.

In conclusion, we have given a transparent ex-
planation of the physics of the Al’tshuler, Aronov,
and Spivak prediction and shown that the essence
of their diagramatic calculation can be reduced to
first-order degenerate-state perturbation theory.
The degenerate states are particularly sensitive to
disorder—the relative shift of their energy levels
with AV varies linearly rather than quadratically.
The presence of a flux can already break this degen-
eracy even without disorder. Thus there is a partic-
ularly strong influence of disorder at ¢/¢py=0, %,
or 1 where the pure system has degeneracies. The
maximally crossed diagrams can be interpreted in
terms of splitting this degeneracy between the origi-
nal time-reversed states. That is why their contri-
bution is important every half flux quantum. It
does not escape our attention that the mixing of de-
generate states which appears in our calculation can
be described in terms of backscattering of the elec-
trons by the impurities. We also note that the con-
dition that our matrix is real when the flux is 0,
bo/2, or ¢ is the same condition as is necessary for
the Hamiltonian to be time-reversal invariant. It is
not sufficient only to have a degeneracy to see the
effect nor is it sufficient to have the matrix be real
[see Figs. 1(a) and 1(b)]. Both conditions are
necessary to observe the Bohm-Aharonov effect
with a half flux quantum. It is possible that this
exceedingly simple way of examining the problem
may be useful in studying other phenomena, such
as magnetoresistance, where the same types of dia-
grams appear as were used in the Al’tshuler, Aro-
nov, and Spivak calculations.
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