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We prove that all transport coefficients of a dirty normal metal in the Aharonov-Bohm geometry are ex-
actly periodic with a period of a half flux quantum. This special periodicity appears only after performing
the ensemble average over a symmetric distribution of random potentials. This result indicates how to im-
prove numerical studies of localization by selectively averaging over the ensemble in such a manner as to

preserve the special symmetries of the Hamiltonian.

The Aharonov-Bohm effect with half flux quanta in high-
ly disordered metals, which was first predicted by
Al’tshuler, Aronov, and Spivak,! has now been verified ex-
perimentally by several groups.2® This calculation was
based on the maximally crossed (or Langer-Neal) diagrams,
and it was not clear how it could be interpreted in terms of
the solutions of the one-electron Schrédinger equation
although a physical interpretation of the diagrams was given
in terms of a path-integral approach.>” In particular it was
not obvious from examining the Schrddinger equation why
half a flux quantum was the fundamental periodicity.® In a
recent paper’ we examined this novel effect in terms of
first-order degenerate perturbation theory and offered an
explanation of the phenomena including the role of dimen-
sionality and disorder. We showed that the origin of this
extra oscillation in the conductivity at the flux value
& =d¢o/2, where ¢po=hc/e is the flux quantum, could be
traced to the existence of degeneracies and time-reversal in-
variance occurring at ¢ = ¢,/2 in addition to those occurring
at ¢ =0 and ¢¢. In a ring no degeneracies of this type occur
at other values of ¢. We considered the participation ratio
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where r; is the position of the ith site of an N -site system,
and showed that the quantum correction to the conductivity
due to localization has similar behavior at ¢¢/2 as at 0 and
bo.

In the present paper we show the generality of this effect
for all levels of disorder. We prove for independent elec-
trons in the large system limit that the total conductivity,
and in. fact all transport coefficients, are exactly periodic with
a period ¢o/2 as long as the random on-site energy is
symmetrically distributed about some average value. The
proof depends on the observation that an ensemble aver-
age!® over the random potentials restores particle-hole sym-
metry in a highly disordered system. It is this averaging
over ensembles that was not done in the work of Biittiker;
Imry, and Landauer® and ethers!! which pertained to a
specific given sample. We also observe that by averaging
over appropriate members of the ensemble in pairs before
doing the rest of the ensemble average one can significantly
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reduce the fluctuations in certain numerical simulations of
highly disordered systems.

We first note the existence of certain symmetries that ap-
pear in the Hamiltonian. We use a gauge-invariant tight-
binding version® of the single-particle Schrédinger equation
on a ring. The electronic energies and eigenvalues can be
obtained simply by diagonalizing the matrix:

Vi T 0 - Tiye™
Ty, Vy Tz - - 0
0 Ty V3 0
H(¢)= : s : L
T1N€_2"l¢/¢0 0 0 e VN

where V; is the on-site random potential and T; the random
hopping matrix element between nearest-neighbor sites i
and j. The symmetries that are important for the present
situation are already apparent for a 3-site and a 4-site ring in
the limit of no disorder (all ¥;=0, all T; =const). In Fig. 1
we show the eigenvalues as a function of flux ¢ for the two
cases. In the 3-site system there is a symmetry between the
top and bottom of the band if ¢ is changed by ¢o/2. This
‘“glide plane’ symmetry exists for all rings with an odd
number of sites. In the 4-site system there is a symmetry
between the top and bottom of the band (with no change in
¢). This particle-hole symmetry exists for all even-
numbered rings.

The presence of diagonal disorder (random values for V)
destroys these symmetries for any given set {¥;}. However,
we are only interested in the average electronic properties of
the ring since in the large-N limit the typical properties
should be the same as the average properties. We will show
that if V; is symmetrically distributed about its average
value, then the symmetries are restored when an average of
the physical quantity is taken over the ensemble of the ran-
dom (V}. Off-diagonal disorder (random 7;) does not
break these symmetries.

To see how the symmetries are restored we construct the
average over members of the ensemble by first summing
specially related pairs chosen in the following manner. For
each member of the ensemble, given by a set of potentials
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FIG. 1. The energy eigenvalues for a 3-site and a 4-site ring with
no disorder. The circles show the points related by the symmetries
discussed in the text.
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{V;}, we also take a second member of the ensemble with
Hamiltonian H'(¢) given by the set of potentials

{Vi'’= —V;} (where the potential at every site has been mul-
tiplied by —1). For a ring with N sites
¢0 +
¢+N =Ut[-H()IU , )

where we have simply made a unitary transformation by the
matrix U on the negative of the Hamiltonian in Eq. (1).
The unitary transformation we have used is the one which
changes the sign of every wave function on alternate sites,
¥ _(r)=(=1)44(r) where a labels the eigenstate:

1 0 0 --- 0
0 =10 - 0

u=fo 0o 1 .- 0 . , 3)
0 0 0 (—1)N+1

Thus, the Hamiltonian H (¢) is mapped into the matrix
— H'l$p +N(po/2)] by this transformation. It is clear . that
any quantity which depends only on |y, (r)|? will have the
‘‘glide plane’’ and particle-hole symmetries when the two
systems H(¢) and H'(¢) are averaged. Thus, the partici-
pation ratio P has these symmetries when averaged. More

complicated functions of four wave functions, which are im- -

portant for the transport coefficients, also obey these sym-
metries when averaged. An example is

‘l’a(’I)‘l’ﬂ(ri+n)l”'y(rj)d‘8(rj+n) ’

which picks up a factor of ( +1)2=1 under the transforma-
tion.

In the large system limit the physical properties of the
system are not expected to be sensitive to whether or not
there are an even or an odd number of sites in the ring pro-
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vided we look at a narrow band of energies rather than a
single eigenstate. Thus a large odd- (even-) numbered ring
will have exact (approximate) ‘‘glide plane’’ symmetry and
approximate (exact) particle-hole symmetry. We expect the
approximate symmetries to get proportionally better as the
system size is increased. Thus, the average of P over a nar-
row energy band in a large system will be periodic with flux
¢0/2 (and not ¢y as would be expected from gauge sym-
metry alone®!!) since the states in the upper half of the
band at ¢ and (¢é+¢d¢/2) can both be mapped onto the
same states in the lower half of the band at ¢. This argu-
ment goes through equally well for a square array of sites
that form a two-dimensional cylinder or a cubic array of
sites that form a thick-walled cylinder.

The participation ratio is only a portion of the conductivi-
ty.> We will now show that the conductivity is also periodic
with period ¢o/2. The conductivity o,,(¢$), where a and b
denote Cartesian indices, is given by a current-current
correlation function!?

f do’ X 19,0 ¢) _ N&

s » (4
o' —w—i8 @b @

iwogp(w,¢)=
where
X" ,b(w ¢)—w2 f(ea) — f(eg) {al /s 1B)
x(Blhla)sto +e,—€g) ,  (5)

where f(e) is the Fermi-Dirac distribution function. The
current operator in the tight-binding model is given by

T= Ze
where H is given by Eq. (1). Thus,
(al-, |B>__§(ri— rj) Tij‘lla("i)ll‘ﬁ(rj) , @)

Ty (nl= L SleTin) (LHT @)

where the sum is only over nearest-neighbor pairs.

Clearly, under the unitary transformation [Eq. (3)]
{a|J,|B) changes sign but since the conductivity there is a
product of two matrix elements, the conductivity has the
same ‘‘glide-plane’’ symmetry for odd-numbered rings and
the same particle-hole symmetry for even-numbered rings
as does the participation ratio. Thus in the large system
limit the conductivity has periodicity of ¢¢/2.

This same argument can be extended to any of the other
usual transport coefficients, such as the spin susceptibility
and dielectric constant. In these cases the matrix elements
result in products of wave functions on the same site.

These conclusions evidently apply only to a noninteracting
system. However, the leading corrections due to interac-
tions can be included in a random-phase approximation
(RPA) expression for the dielectric constant €. Since we
have just found that the averaged e also has the same
period, ¢¢/2, interactions do not effect these results to this
level of approximation.

While the transport properties of a ring are exactly period-
ic with flux ¢¢/2 in the limit of infinite system size, it is
useful to know the corrections for finite systems. We have
studied numerically the approximate particle-hole symmetry
of small rings with an odd number of sites at ¢ =0. A mea-
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sure of the particle-hole asymmetry is the difference
between the average participation ratios in the bottom Pgor
and top Prop halves of the _band when pairs from the en-
semble are averaged: AP = Pgor— Ptop. In the limit of low
disorder AP =2/(3N) since all states at ¢ =0 are sinusoidal

standing waves each of which has P=32- except for the

lowest state in the band which has P =1. For intermediate
and large disorder AP falls off much faster than 2/(3N).
We conclude that even in the worst case of small disorder
the particle-hole asymmetry in the participation ratio falls
off at least as fast as N1,

In addition to ensemble averages themselves, it is in-
teresting to look at the variance about the average. This can
be done by treating each set {V}} separately or by averaging
each pair {V;} with {— V;} first and then taking the average
over these pairs. We find the remarkable result that if we
perform the average in the latter fashion so as to preserve
the approximate particle-hole symmetry at each step of the
calculation, the noise is much reduced especially at large or
small values of disorder. This is shown in Fig. 2 where we
plot the variance about the average for a 7-site and a 63-site
system. The calculation was done in the two ways men-
tioned above.. We find that the variance is much smaller if
the special averaging is done first for all values of disorder
except for the region where the localization length at the
center of the band is comparable to the system size. At that
value of disorder the variance is largest. We see that as the
system size is increased the benefit of averaging pairs first is
also increased. However, even with only seven sites there
is a dramatic savings in the number of different matrices
that must be diagonalized to get the same statistics. For an
even-site system, where the symmetry is exact, the correct
average is given immediately.

In conclusion, we have shown that the transport proper-
ties of a disordered material in the Aharonov-Bohm
geometry show a periodicity of ¢/2 instead of the expected
¢o. This result is valid only when the ensemble average
over the set of random potentials is done. We have shown
this by taking the average in a special way which preserves
the symmetries of the Hamiltonian at each step. We have
also shown that performing the average in this way can be
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FIG. 2. The variance in the quantity AP vs disorder for 7-site
(triangles) and 63-site (circles) systems. The triangles are shifted
vertically by two decades for clarity. The closed symbols indicate
averaging done with the specially selected pairs discussed in the text
and the open symbols indicate the average done in the normal
fashion. AV is the width of the distribution in ¥ where Tj;= — 1.

very useful in numerical simulations of localization since it
substantially reduces the statistical variations.
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