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A two-band model of spinless fermions in one dimension is constructed. Density-density cou-
plings, umklapp scattering, and interband transitions are included. Renormalization-group equa-
tions are derived and discussed. In addition, it is shown that with one condition on the couplings
and the velocities the model may be transformed to two uncoupled sine-Gordon Hamiltonians,
which makes it possible to obtain solutions in regions where the renormalization-group equations
are not valid. An important property of the model is that there can be superconductivity with

repulsive interactions.

PACS numbers: 72.15.Nj, 74.10.+v

There are several problems of current interest for
which it is necessary to study a two-band model of
electrons in a solid: fluctuating-valence compounds,
organic superconductors, and heavy-electron super-
conductors. In this Letter we shall consider a two-
band model of spinless fermions in one dimension as a
first step towards a general theory. Such a model sim-
plifies the problem in such a way that it retains much
of the essential physics and yet it is possible to carry
out a fairly complete analysis of its behavior. It will be
shown that with one condition on the coupling con-
stants and Fermi velocities, the system may be re-
duced to two independent sine-Gordon Hamiltonians
and is, therefore, soluble. The separability condition
cannot be satisfied in weak coupling, and so is not evi-
dent in a conventional fermion renormalization-group
treatment. An important property of the model is that
there can be superconductivity with repulsive interac-
tions.

A one-dimensional model of valence-fluctuation
materials has been introduced by Varma and Zawa-
dowski,! who derived renormalization-group equations
analogous to those of the single-band electron gas in
one dimension.? In the simplest situation, there were
six coupled equations which were solved numerically
in a limited regime appropriate for the valence fluctua-
tion problem. It is clearly desirable to have a more
complete discussion of this model particularly because
physically interesting regions with qualitatively new
physical properties may involve scaling towards strong
coupling where the renormalization-group equations
are not valid.

In the case of organic conductors, it is usual to con-
sider single-band models? on the grounds that there is
just one important spatial state for an electron or hole
on the constituent organic molecules. However, it has
been pointed out?® that, for organic superconductors, the
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excitation energy to the next level is not negligible in
comparison to the transfer integral so that the possibil-
ity of a second band should be taken into account.
The model to be studied assumes that the bands over-
lap, which is consistent with one of the band struc-
tures* proposed for organic superconductors. The
model is one dimensional, which is appropriate above
a crossover temperature estimated® to be between 10
and 80 K. An essential feature of organic supercon-
ductors is that umklapp scattering from the anion lat-
tice is ‘“‘screened’’ by electron-electron correlations at
all temperatures.” This requirement is supported by
the recent discovery® of a structural phase transition
which enhances umklapp scattering without diminish-
ing the conductivity. For a single band this in turn im-
plies’ an attractive interaction between electrons on
the same organic stack which is sufficiently strong to
overcome the Coulomb repulsion. But this is not easy
to reconcile with the known properties of organic con-
ductors in general.® It will be seen that a two-band
model provides an alternative and more plausible
mechanism for the irrelevancy of umklapp scattering.
We shall make the simplification of omitting the
spin of the electrons. In the case of the organic super-
conductors this is justified because the couplings which
appear in the spin degrees of freedom are irrelevant
variables, and the physics is governed by the charge-
density waves.® It is also appropriate in the limit of
strong repulsive on-site interactions, where the role of
spin is suppressed.? Since the general problem is quite
complicated,! it is useful to start out with a study of
the spinless case, which has fewer degrees of freedom.
The model we consider is a natural extension of the
Luttinger model in which the fermions have an inter-
nal degree of freedom o. In the present case o is the
band index (o =a,b) whereas in the usual theory of
the one-dimensional electron gas? it is the spin. The
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new features of the two-band model are that the Fermi
velocities v,,v; and wave vectors k,,k, are unequal,
and that the interactions are not invariant under rota-
tions in o space. The major consequence of this is
that, in general, the decoupling of the ‘‘charge’’-
density and ‘‘spin”’-density degrees of freedom, which
is an essential element in obtaining exact solutions,?
no longer holds true.

As usual, the interaction terms are two types. The
first may be written in terms of the densities p,, and
also occur in the Luttinger model:

H{= 3 &,P10Ps" 1

1
o, 0 =ab

=g (Wl 1501, +Hee) + gf@Lﬂa‘l’lh%b +Hc.).

The umklapp term g, is important if there is a “‘joint”’
half-filled band such that 2(k, +k;) is equal to a re-
ciprocal lattice vector, as in the orgamc s 1perconduc
tors.> Backward scattering involving ¢2a¢1b¢2b¢1a is
omitted because it is important when k, is much dif-
ferent from k;. The significant new element is the
interband-scattering term with coupling constant g,.
Such an interaction does not occur in the Fermi gas
with spin unless there is a spin-orbit coupling,’ and
even then it is quite weak.

In order to obtain a complete picture of the proper-
ties of a one-dimensional model, it is necessary to use
both the renormalization-group method and boson
representations.? Following the standard derivations,?
the renormalization-group equations to lowest order in
the coupling constants are

Za=37v(E3-2H, (3a)
Zm=1v(E—-2D, (3b)
Ep=1(33+2h, (3c)
2/=32r(280—Fu—EZm). (3d)
Z5=783(285+ 8o +Zss). (3e)

where g'=dg/dl (I is the logarithm of a cutoff),
Y= (Ua+vb) /4vavb, 8aa= gaa/'n'vaa gbb"gbb/'n'va,
and g=2g/w (v, +v;) for g=2a, 3, OF gf It fol-
lows immediately from these equations that g,, — s
is an invariant and that there is a hyperplane
gy=83=0 of fixed points which are stable when
2845 < — |8aa +Zspl. It is also easy to show that the

Here, p,a=¢iT,,m[;ic where ;. annihilates fermions
with band index o moving to the right (y;,) or the
left (¢,,). The couplings g,,,8 and g, = g, are dif-
ferent in general, but in the symmetric limit they are
related to the usual backward and forward scattering
processes, &, and g;,2 by g, =& =8,—& and g,
=g,. Terms of the form p;,p;, may be absorbed in
the Fermi velocities. A p,p;; coupling could be taken
into account but it will be omitted from the present
discussion because it complicates the renormalization-
group equations without changing the essential phys-
ics.

The second type of interaction consists of umklapp
scattering and interband transitions:

@

¥,o=2ms) " exp{— ix/?[f_’_‘m To(x)dx' £¢g(x)] Fikex},

| . .
domain of attraction of the fixed hyperplane is

(285 +8aa +85s) < — [(1+9)/21V2g;|
when g =0 and
(2805 — Baa — 8ap) < — [(1+9)/21V2|g |

when g3;=0. Equations (3) are most useful in that
domain because renormalized coupling constants
remain small.

In the symmetric limit v,=wv; (or y=1) and g,
=g, Egs. (3) are identical to the renormalization-
group equations for a single band of fermions with
spin (equal to @ or b). In that case,? they reduce to
two independent pairs of equations—one pair for
charge-density waves (involving g3 and 28, +84
+g,,) and the other for the spin-density waves (in-
volving g, and 28,, — 84, —&s). Not only does this
separation simplify the analysis of Egs. (3) but it also
makes it possible to obtain exact solutions with the aid
of boson representations of the fermion operators.?
For the general two-band model, the charge and spin
degrees of freedom are always coupled in Egs. (3) and
there is no sign of a potential simplification. However,
we shall now show that this is a consequence of the as-
sumption of small PSS With one condition on the

coupling constants and velocities, the charge- and
spin-density waves are decoupled even for distinct
bands, and the problem reduces to two independent
sine-Gordon models.

To see how this comes about, we linearize the ener-
gy spectrum and introduce the boson representation of
the fermion field%:

@

where the upper signs correspond to / =2, the lower signs to i =1, and s is a cutoff related to the bandwidth (or
lattice spacing) in a lattice model. The ¢, (x) are boson fields and 7, (x) their conjugate momenta. With this
representation, the full Hamiltonian, including the kinetic energy, may be expressed entirely in terms of boson
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variables as?

H=H,+H' *)
= L|,T 37|l 3¢

Hy==|m A1r+l Y ]B[ Y 6)
__ & /29T _& va (™ o T (o

H 2ms)? cos(27V/?87¢) + 2ms)? cos[ 27 f~mdx a’r(x)], @)

where wT=(mz wp), ¢T={(dasdp), a’=(1,—1),
BT=1(1,1), and A4,B are symmetric 2X2 matrices,
A=V—Gand B=V +Gsuch that G=(g__),and V
is diagonal with elements v, and v;. The superscript T
denotes transpose.

Since H, is quadratic in boson fields it can be diago-

nalized by a canonical transformation. Define the new

fields
'rr,-—-)\,‘l/"‘u,Tfr, ¢i=)‘11/4u1TA_1¢r

®

where A; and u; (for i=1,2) are eigenvalues and
eigenvectors of AB:

|
The transformation (8) is canonical because of the

orthonormality condition u/4~'u,=8;. With this
transformation, H is diagonal but the total Hamiltoni-
an has a coupled sine-Gordon form, because, in gen-
eral, the arguments of the cosines in Eq. (7) contain
both ¢; and ¢, or both 7; and ,.

We now observe that /' separates into two uncou-
pled cosine terms if « is an eigenvector of 4B, specifi-
cally @ ~ u,. In that case, it is evident from Eq. (8)
that the g, term in Eq. (7) involves only m,. But,
since a’B8=0, it follows from the orthonormality con-
dition that B~ A~ 'u;, and hence from Eq. (8)
BT¢ ~ ¢, and the umklapp term in Eq. (7) contains

ABu;= ;. ©) only ¢;. As a consequence the full Hamiltonian
- separates into two uncoupled sine-Gordon models®:
2
¢, 83
= 13y1/2]2 1/2
Hl"'z')\ll wi+ aX] ]+ (271'5)2 COS[(S’H’QI) / ¢1(x)], (10)
2 1/2
0o, g 8 x
=1y12] 2 S o7 Y dx' 11
Hz Ay [’172"‘[ 5% + (275)2 COSH 9, f_w‘ﬂ'2(x ) ’ an
where

From the definitions below Eq. (7), « is an eigenvec-
tor of AB in the symmetric limit (v, =vp, £ = &),
or if

v—8u/2m = (g/27) (8g/2w8v), (13)

which is one condition on the three coupling constants
and two Fermi velocities. Here v=j{v,+v;),
g=5(8aa+8m), Su=1v, — vy, and 88 = Laz — Zs-

The properties of the sine-Gordon equation are suf-
ficiently well known that reduction to Egs. (10) and
(11) constitute a ‘“‘solution’’ of the model but, if re-
quired, there is sufficient freedom to choose 91=%
and 6, =2 to obtain the free-Fermion limit? for which
calculations may easily be carried out. For small g3
and gy, there is a soliton gap for the ¢, modes when
6, < 1 and for the ¢, modes when 6, > 1.

The presence of these gaps allows us to evaluate the
various correlation functions for temperature 7 much
larger or much smaller than the gap A. When
T >> A, the umklapp-scattering and the interband-
transition contributions to H;, may be ignored and the
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‘ correlation function X may be evaluated in the stan-
dard way.? They have power-law behavior, X ~— w*.
The major differences from the symmetric case come
from the fact that ¢, ~ ¢, + b, and my~ 7, — 7, are
“jsocharge’’- and ‘‘isospin’’-density operators, but
their conjugate variables are not [see Eq. (8)]. One
consequence is that the exponents y are in general dif-
ferent for the two types of fermions. A full discussion
will be presented in a future publication.

The low-temperature properties are significantly af-
fected by the existence of an energy gap. For the
present we shall take g3 =0 and only sketch the results
for the more interesting case where g, is relevant so
that 8, > 1. Then there is a gap in the ¢, mode, which
removes the power-law singularities in the ‘‘charge-
density-wave’’ correlation functions as well as for pair-
ing between two different types of fermions. Using
the high-temperature exponents when the isospin de-
grees of freedom are frozen, we find that the super-
conducting correlation (SC) involving the same type
of fermions has the dominant divergence for 8; > 1,
while the ‘‘isospin-density wave’® (ISDW) is favored
for 6, < 1. For the symmetric case, the condition
6, > 1 for SC implies g +g, <0, i.e., attractive in-
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teraction between fermions. For the asymmetric case,
the condition written in terms of the couplings and

velocities is
8 2

with v > (g +g,)/2w. Thus for 8g/2mwdv > 1, it is
possible to satisfy the inequality with g +g, > 0. In
other words, one can get superconductivity out of en-
tirely repulsive interactions.’

The separability condition (13) cannot be satisfied
for weak coupling, except in the symmetric limit.
Therefore, it is not surprising that the possibility of a
decoupling into two sine-Gordon equations is not evi-
dent in the renormalization-group equations (3), since
the right-hand sides of these equations are the leading
terms of expansion in powers of S The

renormalization-group equations for the full sine-
Gordon Hamiltonian, (5)-(7), do not require such an
expansion but only assume that [g;| and |g;| are
small.2 Two of these equations give the anomalous
dimension of gr and g3. For small &, they reduce to

Egs. (3d) and (3e), but for intermediate coupling
when Eq. (13) is satisfied they agree with the corre-
sponding equations obtained from (10) and (11)
separately in the continuum limit g3 — 0 and g, — 0.
We have applied the same approach to a two-band
model of fermions with spin. Then there are four col-
lective modes and the Hamiltonian cannot be separat-
ed if all important interactions are included. However,
it is still possible to make progress if the remaining
couplings are irrelevant variables. The method may
also be applied to fermions with a nonlinear coupling
to phonons, which is another problem involving dif-

g +gab
2

g +gab
27
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ferent velocities. These questions will be considered
in a future publication.
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