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We consider the most probable value of conductance of a disordered quantum conductor in the frame-
work of the random matrix theory developed earlier. Analytic calculations are possible in the metallic as
well as strongly localized regimes. We make a simple assumption on the eigenvalue density, as suggested
by numerical work, and explore the consequences of a one-parameter distribution. A key result of the
one-parameter scaling theory, that there is true metallic behavior only in dimensions greater than two, is

recovered naturally.

PACS numbers: 72.10.Bg, 05.60.+w

The one-parameter scaling theory of localization has
been enormously successful in describing a variety of
weak-localization phenomena in disordered quantum
conductors.! However, the presence of universal conduc-
tance fluctuations in metals? raises the issue of how to
reconcile the non-self-averaging behavior characteristic
of the conductance g with the smooth scaling behavior of
g assumed in the localization theory. We proposed ear-
lier,® based on a conjecture by Imry,* that the theory of
random multiplicative transfer matrices, together with a
global maximum-entropy hypothesis, provides a natural
framework to study the distribution of g in terms of the
distribution of the eigenvalues of the transfer matrices.>
In particular, we showed that the eigenvalue distribution
factorizes naturally into a universal term which comes
from symmetry considerations alone and describes the
conductance fluctuations, and a parameter-dependent
term which characterizes the global eigenvalue density.
The one-parameter scaling theory can then be reformu-
lated in the presence of these fluctuations by demanding
that this eigenvalue density be a function of a single pa-
rameter describing the degree of disorder, size, dimen-
sion, Fermi energy, etc., of the system. Independent nu-
merical work strongly suggests® that the logarithm of the
eigenvalues is approximately uniformly distributed in the
metallic regime, which can be obtained simply from a
one-parameter eigenvalue distribution. For stronger dis-
order, it has been argued that additional parameters are
needed.”

In the present work we assume that the eigenvalue
density in the metallic regime is well approximated by
the numerical work on tight-binding Anderson Hamil-
tonians. The distribution of the eigenvalues of the
transfer matrices can then be described by a single pa-
rameter, although not necessarily equal to the classical
conductance. We then consider the most probable distri-
bution, where analytic calculations are possible in both
the metallic and strongly localized regimes. We calcu-
late the conductance as a function of the parameter and
determine the length and dimension dependence of the
parameter. We show that such a dependence implies

that there can be metallic regimes in the thermodynamic
limit in dimensions greater than two only, in accordance
with the one-parameter scaling theory. In addition, we
find that in the strongly localized regime, the eigenvalue
distribution is again very regular, described by a single
localization length. We find that the most probable dis-
tribution is entirely characterized by the smallest eigen-
value, which describes not only the localization length in
the insulating regime but also the conductance in the
metallic regime. It is encouraging that such detailed
qualitative conclusions follow naturally within the for-
mulation of the random matrix theory and the maxi-
mum-entropy hypothesis, which may provide an alterna-
tive framework to study localization where fluctuation
effects arising from symmetry considerations are already
included.

A disordered conductor of length L and cross-sectional
area L' attached to perfectly ordered leads with N
propagating momentum channels can be characterized
by a 2N X2N multiplicative transfer matrix T giving the
flux amplitudes to the right of the conductor in terms of
the incoming and outgoing fluxes on the left. The two-
probe conductance g is then given by?

& 1
g=i§1———l+Xi, S €))

where X; = 0 are the NV nondegenerate eigenvalues of the
matrix X = ¢ [TTT+(71T) 71 —2]. The distribution of
g is then given in terms of the distribution of X;, which
was obtained within the random matrix theory and the
maximum-entropy hypothesis: 3

P({&})=EIXi—)Q[ﬁHexp[—fC&)], )

where B8 can be 1 or 2 depending on whether the system
has time-reversal symmetry or not (8=4 in the presence
of spin-orbit coupling®). The factor IT|X; —X;|# is in-
dependent of any system parameter and describes the
universal conductance fluctuations as conjectured by
Imry. The system parameters enter the distribution via
the function f(X), which also determines the global den-
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sity of the eigenvalues. The distribution will be con-
sistent with the one-parameter scaling theory provided
f(X) depends on a single parameter.

The functional dependence of f(X) cannot be calcu-
lated solely from symmetry considerations. However, in-
dependent numerical calculations based on the tight-
binding Anderson Hamiltonian strongly suggest that the
variable v defined by coshv=2X—1 is uniformly distri-
buted for a wide range of parameters in the metallic re-
gime.%!® It is therefore more useful to write the distri-
bution in terms of the variable v. It is easy to show that
a function of the form f(v)~v? gives a uniform charge
density. So, at least in the metallic regime an approxi-
mate form for the function f can be taken to be f(z,v)
=(z/2)v?, where z is an unknown parameter. (It has
been pointed out by Pichard et al.!° that if this same
form for f holds for all v then it leads to a log-normal
distribution for g in the localized regime. We shall dis-
cuss this regime later.) Given the function f(v), the dis-
tribution P(v) can be written in terms of an effective
Hamiltonain!' H defined by P(v) =exp(—BH), where
(we use B=1 for notational simplicity)

H({W)=— E In|coshv; —coshv;|

i<j

N N
— 2 In|2sinhv;|+ $ 22 v} (3) -
J J

It is clear that the parameter z, which we leave un-
specified at this point, can be varied to obtain both the
metallic and the localized regimes. For sufficiently large
z the confining term ~v2 dominates over the logarith-
mically repulsive term in Eq. (3) and many of the eigen-
values are close to or less than 1. This, according to Eq.
(1), gives rise to large g and hence a metal. On the oth-
er hand, for sufficiently small z all the eigenvalues will be
very large, contributing insignificantly to the conduc-
tance, and we have an insulator. In order to make this
statement more quantitative we need to solve for the
Hamiltonian as a function of the parameter z. In the
metallic regime, v; <1, we can expand the hyperbolic
functions and the Hamiltonian becomes

where we have defined u=v?, and additional constants
have been ignored. In prmcnplc, one should use this
Hamiltonian to calculate the average conductance and
its higher moments, but even in the restricted small-
eigenvalue regime an analytic calculation is not possible.
However, progress can be made if we restrict ourselves to
the most probable configuration of the eigenvalues,
defined by putting 8 H/du; =0 and calculate the conduc-
tance for that configuration. The most probable distri-
bution of the eigenvalues is then given by the solution of

N N
H{u})= —_Z_lnlgi —uil= ;—Zlnyj+
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the equation
L 41 _z,, (5)
=T py 2py 0 2
which can be solved by Stieltjes’ method.!! We define a
polynomial p(u) of order N such that p(u;)=0. It is
easy to show that
1 _1p"W)
=jwi—np 2 p'Quy)
where a prime denotes a derivative with respect to u.

Equation (5) can then be rewritten in terms of the p(u;)
as

- (6)

wip" )+ —zp)p'(u;) =0. ¢))

The polynomial up”(u)+ (1 —zu)p'(u) has exactly N
zeros and therefore must be proportional to p(u). We
can obtain the proportionality constant by equating the
coefficients of V. The result is that the polynomial
p(u) satisfies the differential equation

pp" W)+ —zu)p'(w)+zNp(p) =0, ®)

whose solution is the Nth-order Laguerre polynomial
Ln(zy). Thus in the most probable distribution the ei-
genvalues v; sit at the IV zeros of the Laguerre polynomi-
al Ly(zv?). In particular, the first zero of the Laguerre
polynomial is not at the zero of its argument, so that the
smallest elgenvalue is not zero, but is given by vmin
=(zN) "2, This is very important because it is the
smallest eigenvalue that determines whether the system
is insulating or metallic, and therefore must become
large with large disorder.

Keeping in mind the fact that the smallest eigenvalue
is nonzero, we can define an average density of zeros of
the Laguerre polynomial, which will give the eigenvalue
density. In terms of the variable v this is given by

o(v) = +[z(4N —zv?)]11/2 ©)

which can be taken to be a constant equal to (zN) /2 the
largest value being vmax =2(N/z) 2. We can now calcu-
late the conductance explicitly, as long as there are many
eigenvalues much less than 1:

g= _1 = _o(v)dv_
z 1 +X, f 1+coshv
=~2zN tanh -VN/z . 10)

We have kept the upper limit equal to vp.x in order to
allow for the case where vy, < 1. For the case vpax > 1,
the upper limit should be replaced by 1, since our expan-
sion of the hyperbolic functions is not valid beyond it,
but the effects are negligible. We can now separate
three distinct regimes as functions of z from the above
expression of the conductance. For z>> N, v;.:<K1, ie.,
all eigenvalues are much less than 1. In this regime
g =N which is the ballistic regime. For z KN, vy > 1
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and the smallest eigenvalue is at vpi, =(zN) ~Y2. Thus
as long as zN>>1, there will be many eigenvalues less
than 1 and the system would be metallic. The conduc-
tance in this regime is given by g=(zN)"2. This is the
Ohmic regime. For z<«1/N, all the eigenvalues are
much larger than 1, and our expansion of the hyperbolic
functions in the Hamiltonian is no longer valid. This is
the non-Ohmic regime. The calculations become simple
again for the strongly localized regime which we shall
discuss later.

We can obtain an explicit length dependence of the
parameter z by demanding that Ohm’s law be valid in
the Ohmic regime. Thus for 1/N<z<N, we have
g=(N)2=N]/L. This gives z=N({/L)% If we use
N~L? ! where d is the dimension, we get z~L%73,
which implies that vmin=(N) ~V2=L/NI~L2>74, This
has the immediate consequence that d=2 is the margin-
al dimension, in accordance with the one-parameter scal-
ing theory.! For a given size L, viio Will be determined
by many system parameters via its dependence on z, but
as the size L is increased, vmi, increases with L in less
than two dimensions, always leading to an insulator at
sufficiently large L. In dimensions greater than two, vy
decreases with increasing L, leading to a metal for small
enough disorder. It is encouraging that such qualitative
results follow naturally within the framework of the ran-
dom matrix theory.

We now consider the strongly localized regime. Fol-
lowing Pichard et al. we assume that f(v) remains of the
same form even in this regime. We emphasize here that
there is no numerical evidence that this simple one-
parameter form for f(v) holds for strong disorder as
well. In fact, Cohen, Roth, and Shapiro’ have argued,
based on a Migdal-Kadanoff-type scaling approach, that
the distribution is generally expected to have two in-
dependent parameters and only in the metallic limit does
a one-parameter distribution emerge. Nevertheless, it is
useful to determine the consequences of such a simple as-
sumption over the entire range of disorder. The strongly
localized regime is particularly simple to consider. In
this regime z is very small and all the eigenvalues are
much larger than 1 so that it is more convenient to go
back to the variable X. The most probable set of eigen-
values in the limit X>>1 is given by dH ({X;})/0.X; =0
which gives

N -
1 1—zInX;

>, + =0. 11

i Xi —X; Xi

The conductance is determined entirely by the smallest
eigenvalue. Let us arrange the eigenvalues in order of
increasing magnitude so that X, is the smallest one.
Then all X; for { > 1 are much smaller than X; and we
can neglect the first term in Eq. (11). Then X is given
by Xi=exp(l/z) and the conductance is g=1/X,
=exp(—1/z). The nth eigenvalue X, is obtained from
the above equation by neglecting all X, for m < r in the
first term and neglecting the first term for all m > n.

This leads to X, =exp(n/z), so that X, =X%. Thus the
logarithm of the eigenvalues is again uniformly distribut-
ed. Note, however, that in the localized regime g has the
length dependence g =exp(—v;) ~exp(—L/¢), where ¢
is the localization length, which implies that z ~¢/L and
Vmin~L/¢, independent of dimensions. This is different
from the length dependence in the metallic regime. We
plan to study the conductance for all values of z numeri-~
cally in order to better understand the crossover region,
which will also allow us to calculate the weak-localiza-
tion correction.

In summary, we show explicitly that a key result in the
one-parameter scaling theory of localization, namely,
that there can be true metallic systems only in dimen-
sions greater than two, can be obtained naturally within
the random matrix theory formulation proposed earlier.,
The scaling theory does not take into account the univer-
sal conductance fluctuations at length scales small com-
pared to the inelastic length in the system, but describes
the weak-localization phenomena very well. If the ran-
dom matrix formulation can recover key results of the
scaling theory, one of which we show in the present
work, then it would be an alternative framework to study
the metal-insulator tramsition where such fluctuation
effects are already taken into account,
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