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Abstract. It has been argued that, despite remarkable success, existing random matrix theories
are not adequate at describing disordered conductors in the metallic regime, due to the presence
of certain two-body interactions in the effective Hamiltonian for the eigenvalues, in addition
to the standard logarithmic interaction that arises entirely from symmetry considerations. We
present 2 new method that allows exact solution of random matrix models with such additional
two-body interactions. This should broaden the scope of random matrix models in general.

From a phenomenological point of view, random matrix models have proved very useful
in our understanding of a wide variety of physical systems including complex nuclei [1],
disordered metals [2} and chaotic systems [3]. Although the physical systems are very
diverse, the local statistical properties of the characteristic levels of these systems in
the bulk of the spectrum turn out to be universal, similar to the well known universal
properties of the distribution of eigenvalues of random matrices as proposed originally by
Wigner [4]. Recently the models have been generalized to include transitions in spectral
statistics [5] that are characteristic of metal-insulator or chaotic-regular transitions in finite
systems. This has opened up the possibility of describing such transitions in this powerful
mathematical framework, allowing exact evaluation of correlation functions. However, on
one hand the statistical properties of numerically solved microscopic models with random
disorder describing mesoscopic conductors show remarkable agreement with predictions of
the generalized random matrix theory over a wide range of disorder [5, 6]; on the other hand
there are indications that the appropriate random matrix model for disordered conductor
is, while highly accurate, not exact in the metallic regime [7,8]. An exact solution [9]
for the Fokker—Planck equation describing the probability distribution of the transmission
coefficients [10] shows that the resulting matrix model should include a small correction
term which apparently destroys the solvability of the model. This correction is responsible
for a very small correction to the magnitude of the universal conductance fluctuation, but at
the same time this also resolves a small discrepancy between the random matrix result and
the perturbative result from microscopic theory [11]. While it is not clear how important
the correction term is, e.g. to the question of transition from metal to insulator, the fact that
the correction exactly reproduces the result of the microscopic theory makes it qualitatively
non-negligible. It is therefore believed that, despite remarkable success, the usefulness of
the phenomenological random matrix approach for the problem of disordered conductors
will be severely restricted if such corrections cannot be accommodated within a sofvable
framework. . )

In this work we present a new method to accommodate certain types of corrections
to the standard random matrix models. These corrections are similar to those arising in
the problem of disordered conductors. The method generalizes the approach based on the
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theory of orthogonal polynomials and allows exact soluticns for physically relevant models
in terms of known functions.

The basic ansatz of the random matrix theory is that for a physical system described by
an N x N matrix X with eigenvalues x,, n = 1, ..., &, the joint probabilty distribution (JPD)
for the ensemble of all random X matrices consistent with given symmetries (hermiticity,
time reversal etc) and subject to some physical constraint (e.g. given average density of
eigenvalues) can be written quite generally in the form [4]

PG,y xn) =] [ 1xm — %l [ [ (0
m<n n

Here o is a symmeiry parameter and is equal to 1, 2 or 4 for orthogonal, vnitary and
symplectic symmetries respectively. For example, for disordered conductors, a good ansatz
[12] is to use the 2N x 2N matrix X = %[TTT 4+ (r7H~' —~ 271, where T is the transfer
matrix characterizing the conductor and 7 is the unit matrix. The doubly degenerate real
eigenvalues x are restricted between 0 and oo by current conservation and directly gives
the conductance g = 3, 1/(1 + x,). It is useful to describe the probability distribution
in terms of an effective ‘Hamiltonian’, H, of the eigenvalues defined by P = exp(—a &),
where

HG) = = 3 In b — 5l £ =V ). @
m<n o
The repulsive logarithmic ‘interaction’ term arises from symmetry considerations alone,
while the confining ‘single-particle potential’ V{(x) is the Lagrange multiplier function
which takes care of ihe physical constraint [13] mentioned above and, in general, depends
on various physical parameters. For example V(x) = tx, where ¢ depends on disorder,
describes the disordered metal quite well [2,14]. .

The solvability of the model has so far relied crucially on the fact that the only interacting
term in (2) is the logarithmic repulsion which arises entirely from symmetry considerations;
in other words any relevant physical constraint must give rise to only a single-particle
potential. Given this restriction, the uwniversal distributions for nearest-neighbour spacing
or the so-called Aj statistics in the bulk of the spectrum, which we will generically call
the Wigner distributions [4], follow from the above JPD when V(x) is taken to be linear or
quadratic in x. In these cases the potential is strong enough to overcome the logarithmic
repulsion and the density of levels scale with the namber of levels. When V{x) is not
strong enough, the universality breaks down; in particular for V(x) — [In(x)]* for large x,
there is a transition from the Wigner distribution to an uncorrelated Poisson distribution as
a function of a parameter [5]. Nevertheless, the model remains exactly solvable.

The first hint that a disordered conductor in the metallic regime in higher than one
dimension may not be exactly described by a simple logarithmic interaction of the above
form came from attempts to check detailed predictions of random matrix results numerically
[7]; but the nature of the correction needed came from exact solutions [9] of the Fokker—
Planck equation satisfied by the transmission eigenvalues in the metaliic regime [10]. The
solution showed, when mapped to a random matrix Hamijltonian, that the two-particle
interaction part has the form

=33 " Inlxm — Xal — § ) Infarcsinh®(x,/%) — arcsinh®(xy/2)]. (3)
m<n m=n

For x <« 1, this reduces to the standard logarithmic repulsion, but for x =/ 1 the additional
termt makes it non-logarithmic. The difference is enough to change the variance of
conductance from the random matrix result % to the microscopic perturbative result -1‘35
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It is important to establish how significant this small difference i5 as far as the qualitative

statistical properties are concerned. Although the existence of such additional two-body
~ terms can be understood as arising from some physical constraint that need not be of a
single-particle form, the question of if or how it affects the known random matrix results
could not be addressed within the current random matrix framework because any such
additional two-body interaction destroys the existing cntenon for solvability and, therefore,
the vsefulness of the model.

We will show below that, with an additional two-body interaction given by a
simplification of equation (3), it is still possible to solve the model exactly but now using a
new method. While the models constructed are appropriate for disordered conductors, the
solvability-of such models broadens the scope of random matrix theory in general.

As a first step towards constructing a model that can be solved exactly, and is close
to a physical model, we approximate the arcsinh function in equation (3) by a polynomial
sp(x), of degree k; in the metallic regime where model (3) is valid this should give a
good approximation. For simplicity and purpose of illustration we will discuss the case
sp(x) = x* in detail. We will indicate at the end how the method can, in principle, be
generalized to arbitrary polynomials.

We will, therefore, consider in detail the model described by an additional two-body
interaction of the form ln(x" - x"), which is equivalent to a JED of the form

PG,..oxaw)y = [ [ G = 2a)Cry — 27) He-"(f"’ @
m=<n
where k is a positive integer. Note that for £ = 1 the model reduces to the standard unitary
random matrix ensemble. An exact solution of this model should allow us to understand at
least the qualitative effects of the additional two-body corrections.

For the standard logarithmic interaction part we follow the method of orthogonal
polynomials [4] and write the product of the differences ]'[m <n(Xm —Xp) 8S a Vandermonde
determinant for which the jth column has elements x| - xi e xN ~!, j varying
from 1 to N. The determinant remains invariant if we add some linear combination
of the other columns with lower powers of the x’s; the new jth column has elements

Yia(x), Ya(x2), ..., Yo (xy), where Y;(x) = Zz—o ﬂxf is a polynomlal in x, of
degree j» the coefficients & will depend on the choice of the single-particle potential
V as we will show later. In a similar way, we write the correction term [], ., (x% —
x¥) as a second Vandermonde determinant, for which the jth column has elements
Zi(x1), Zjmy{x2),s ..oy Zj—1 (xn), where Z;j(x) = Z[_ eppx® is now a polynomial in x*,
of degree j; the cocfﬁcxents ¢ will be detcrmmed from the choice of V. We now multiply
the ith column of each determinant by exp[—V {x;)/2], and interchange rows and columns
of the second determinant. Equation (4) can then be written as the product of the two
determinants, in the form

Pxy, .., xy) = Cydet K(x;, x;) 5)
where Cy is the normalization constant, and

. N=1 )
R, x5y =exp[—2(V(x) + VgD Y Nila) Zi(x;). 6)
=0

The reason for writing the JPD as a determinant is the following: our ability to evaluate the
n-point correlation function defined by

Ry(xy,... %) = (N—n)'f fdxn+[ Ay Py (xy, .. xn) @
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depends on our ability to integrate the JPD over arbitrary number of variables. These integrals
can be done in a very simple way [4] if the JPD can be expressed as a determinant-as in
equation (3), providing the following two conditions are satisfied: '

fK(x,x)d,u,(x) = constant and fK(x,y)K(y, z2)dp(y) = K(x, z) &

where dg is a suitable measure. This is where the restriction of the standard logarithmic
interaction, equivalent to the case k =-1, comes in. For &£ = 1, the polynomial Z(x} is the
same as Y (x), and they can be chosen such that they form an orthonormal set p(x) with
respect to the measure exp[—V{x)ldx, ie.

. f P (X)Pn (x)e—V(:r) dx = Sy 9

Then the above two conditions in (8) follow from the orthogonality and normalizability of
the polynomials. The additional two-body interaction forces the polynomials to be distinet,
destroying the orthogonality. We will now show that even for distinct polynomials ¥ (x) and
Z(x}), the two conditions in (8) can be satisfied under certain conditions making it possible
to obtain exact solutions for the correlation functions for these generalized models.

Let us choose the coefficients & and ¢ in such a way that the polynomials ¥ and Z
satisfy the following:

fY,,(x)x"fe“V(’de=0 i=01,...,n—1

A0 =1

T (10)

fz,,(x)xfe-"<x>dx =0 j=0,1,...,n—1
#F0 j=n.

It can then be shown [15] that the two polynomials form a ‘biorthogonal’ pair, defined by

f eV O, (1) Z (1) dx = Zndmn. ' a0

We will always choose an overall multiplicative factor such that g, = 1, i.e. the polynomials
are normalized. Clearly the two conditions in (8) are satisfled again:

N-1 N-1 .
fK(x,x)dx =]e-"<x> > W@ Zi(xydx = Zfe“vaf{x)Z;(x) de=N (12)
=0

=0

where we have used the normalization, and

N-1
f K@ »K (3,2 dy = f e VRV DN VUYL N y,(x) Z; () Fu(y) Zi(2) dy
Jd=0

N-=1_ o
= WOV Y 3026 [ InOZMy =KxD 0
=0

where we have used the biorthogonality of the polynomials. Given these properties, the

integration over N — n variables X,.41,..., Xy in the JPD can be explicitly carried out {4],
and we obtain

Ry, = det[K (xi, ;)i j=1,..n (14)
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where the kemel X (x;, x;) is given by equation (6). In particular, the density is given by
K({x, x) and the two-particle kernel, from which the nearest-neighbour spacing distribution
or the Aj statistics can be calculated, is given by K (x, ¥)K (¥, x).

The model is, then, exactly solvable if for a given choice of the smgle particle
potential ¥ (x) the corresponding biorthogonal polynomials can be obtained. The physically
interesting model that already gives a very good description of the metallic regime of a
disordered conductor in the & = 1 limit is given by V(x) = x, 0 < x <€ co. The model,
is exactly solvable in terms of Laguerre polynomials. For arbitrary &, the corresponding
biorthogonal polynomials have been explicitly calculated by Konhauser [16]. (For the
simplest non-trivial case & = 2, these are the polynomials introduced by Spencer and
Fano [17] to study penetration of matter by gamma rays, and studied later by Preiser [18].)
Therefore using the new method the exact solution can be immediately written down in terms
of these Konhauser biorthogonal polynomials. It has been argued [14] that an appropriate
generalization for all disorder, in the &k = 1 limit, is giveh by the choice

Vg =Y lll+(1-gg"s] 0<g<l. ' (15)

As g — 17, V{x} — x, and one recovers the metallic regime, while increasing disorder
corresponds to decreasing g. This model is exactly solvable in terms of the g—Laguerre
polynomials. For arbitrary %, again the corresponding biorthogonal polynomials are
explicitly known [19] and the exact solution can be written’ down in terms of these ‘g—
Konhauser’ biorthogonal polynomials. The detailed properties of these solutions are under
investigation.
It is also poss:ble to consider a more general form of the JPD given by
PGy, xn) = [ JIrGem) — r(za)lls(xm) — 5(xa)] H ol (16)
m<n

where r(x) is a polynomial of degree # and s(x) is a polynomial of degree k. Defining ¥
and Z as polynomlals in r(x) and s{x) respectively, the above. method should be applicable
if conditions (10} are replaced by [15]

f YOLWImdx =0 j=0,1,...,n—1

' #0 j=n an
[e""(xlz,z(x)[r(x‘)]f dx =0 j=0,1,...,n—1 -
40 j=n

The case considered before is a special case where r(x) = x and s(x) = x*. Note that
writing r(x,) — 7 (Xm) = (Xn ~ Xp)r (Xm, Xn) a0d 5(xy) — 5(xXm) = (X — Xp)S(Xp, Xa), We
can write the JPD in the form
Py, in) = | [(om — xa)? 1'[r(xm,x,;)s(xm,xn)l'[e""’f"u (18)
m<n - nr<n

which may allow more physically interesting models to be solved exactly, if the
corresponding biorthogonal polynomials are known. ‘

In summary, we present a new method to accommodate certain two-body interactions
in random matrix models, particularly appropriate for the problem of transport in disordered
“conductors. We show that correlation functions can be written down explicitly in terms of
known biorthogonal polynomials. The approach should broaden the scope of random matrix
models in general.
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I am grateful to Mourad Ismail for many discussions and, in particular, for bringing [19] to
my attention.
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