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Abstract. A wide variety of complex physical systems described by unitary matrices have been
shown numerically to satisfy level statistics predicted by Dyson’s circular ensernble. We argue
that the impact of localization in such systems is to impose certain restrictions on the eigenvalues.
We consider a solvable model which takes into account such restrictions qualitatively and find
that within the model a gap is created in the spectrum, and there is a transition from the universal
Wigner distribution towards a Poisson distribution with increasing localization.

A characteristic statistical property of chaotic (as opposed to integrable) states in quantum
systems is the distribution of their energies. In particular, the nearest-neighbour spacing
distribution or the long-range spectral rigidity of a local set of levels for a wide variety of
systems in the chaotic regime agree remarkably well with the universal Wigner distributions
obtained from the Gaussian random matrix theory [1,2]. The same is also true for ergodic
guasi-energy eigenstates for a variety of periodically driven systems [3] described by the
Flouquet matrix, whose eigenvalues lie on a complex unit circle, and belong to Dyson's
‘circular’ ensemble [4]. We will reserve the term Wigner ensemble for eigenvalues on the
real line. Both ensembles follow the same Wigner distributions in the limit of large number
of eigenvalues. -

A new problem in this area is the impact of localization on the statistical properties
of chaoctic eigenstates, which leads to deviations from the universal Wigner distributions.
Whilst attempts have been made to generalize the Wigner ensemble to include such
deviations at a phenomenological level by imposing suitable constraints [5, 6], it is clear that
such constraints cannot affect the circular ensemble in the same way because the eigenvalues
are already bounded. Nevertheless, numerical studies involving the scattering matrix for
disordered conductors [7], as well as the Flouquet matrix for periodically driven systems
[8], show similar deviations in the spectral properties [9]. It is therefore worthwhile to
consider an analytic model that can accomodate such deviations in the circular ensemble.

In this letter, by considering the scattering matrix describing a disordered conductor
as an example, we will argne that the qualitative effect of localization on the statistical
properties of the circular ensemble is to impose certain restrictions on the eigenvalues. We
will then construct a solvable model that takes into account these restrictions in a qualitative
way, and show that this leads to a transition in the spectral properties from the universal
Wigner distribution towards a Poisson distribution as a function of a single parameter related
to localization.
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Let us consider a one-dimensional scattering of plane waves of energy E from a potential
barrier of width a and height V;. Define hko = +2mE and hk = /2m(E — Vy), where m
is the mass of the incident particle. The 2 x 2 scattering matrix S has the simple form

" ( cosd . —isin 93‘"‘0")
= .

—isinfetikol cosé
where

cosd = 2Icg/\/4k§ + K2 sin*(ka)[1 — K2/ K21 W == ko - 1t cos it = cosf coska.

The eigenvalues are e~'¥*¥_ In a very crude way, we might think of the case E > ¥ to
mimic a metal, with plane-wave states in the region 0 < x < a, while the case £ < Vy will
mimic a finite length insulator with exponentially localized states in the region. It is clear
that while in the former case the quantity cos? can take on all values from zero to unity as
ko is varied, it becomes restricted to values less than unity in the latter case, where k = ip is
imaginary and the term k2 sin(ka)[1—k3/k*] is replaced by p? sich®(pa)[1+42/p?]. Sucha
restriction can be interpreted as a constraint on the possible maximum of Tr(S-§%) which is
proportional to cosd, and the restriction increases with increasing ‘localization’ of the waves
inside the barrier. In case of a2 many-channel quasi-one-dimensional conductor, we can think
of the various channels as having different incoming energies, and an ensemble of conductors
corresponding to different possibilities for the values of k. Channels in the metallic regime
will correspond to having all possible values of # and therefore the eigenvalues will be
uniformly distributed on the complex unit circle without any restriction. On the other hand,
if the channels are localized, the eigenvalues will be distributed in a way consistent with
the restriction on the trace as mentioned above, This very crude argument suggests that
at a phenomenological level, the impact of localization on the eigenvalue distribution of
scattering matrices can be incorporated by imposing constraints on Tr(S <+ S). This can
be done in a way suggested by Balian [10], namely by introducing Lagrange multiplier
functions as constraints in the joint probability distribution of eigenvalues. In the present
work we will choose a constraint that has the qualitative features described above, and
for which one can, at least in principle, solve for all n-point cormrelation functions of the
eigenvalue distribution. The hope is that the qualitative effects obtained from such a solvable
model will be independent of the particular choice of the model. Indeed we will show that
the model predicis a transition from the highly-correlated Wigner distribution towards an
uncorrelated Poisson distribution in a way that is qualitatively similar to the transition seen
numerically for a variety of systems.

For eigenvalues on the complex unit circle, Dyson’s circular ensemble is based, on
the basic ansatz of the random-matrix theory that for a physical system described by an
N x N matrix § with eigenvalues €%, n = 1,..., N, the joint probabilty distribution for .
the ensemble of all random S matrices consistent with given symmetries (unitarity, time
reversal, etc) can be written quite generally in the form [1]

P@,....00) = [ [ [e% — " T] wtm)- (1)
m<n n
Here ¢ is a symmetry parameter and is equal to 1, 2 or 4 for orthogonal, unitary and
symplectic ensembles, respectively. The function w{8) is a Lagrange multiplier function
which might take care of any system-dependent physical constraint [10], and in general
may depend on various physical parameters. Note that for unbounded eigenvalues of the
Wigner ensemble such a constraint is required to keep the distribution normalizable. For the
circular ensemble the above distribution is already normalizable for w(#) = constant and



Letter to the Editor £543

there is in general no need for additional constraint terms. Dyson has shown explicitly that
the two-level correlation function for the above distribution for w(f) = 1/2x is identical to
that of the Wigner ensemble for unbounded eigenvalues in the large- N limit, and therefore
leads to the same universal Wigner distributions. However, this distribution is valid only in
the weakly disordered or chaotic regime, and as we argued before, the impact of localization
can be accommodated phenomenologically by choosing a Lagrange multiplier function
constraining Tr(S + ST), or equivalently cosd. Because we have no microscopic model
at this point, we will choose the constraint, with the correct qualitative features, such that
the mode] is exactly solvable.
Our model corresponds to the choice

w(@) ~ (1 — cos )™, @)

Clearly this has the qualitative features mentioned above, where the parameter A will serve
as a measure of localization; decreasing A increases the constraint on cos&. We will show
that this model is solvable in the sense that the spectral correlations can be written down
in terms of known functions. It turns out that a more general model with two independent
parameters, which contains our model (2) as a special limiting case, is also exactly solvable.
It is because of its simplicity as well as its possible relation to other problems in physics,
that we will start with the more general model, write down the general solution, and will
come back to our special limiting case when we analyse and interpret the solution.
The more general two-parameter model is defined by the choice

1 2

T 2w

(g'%¢%; @)oo
(ag'/2e¥; g)oo
where we have used the notation (x;g), = ﬂzw(l — xg%). With the choice a =
g"’*, A > 1, and g = ¢~¥ in the limit ¥ — oo, or equivalently g — 1, we obtain
w(®) = (1/27)2%*(1 — cos@)™/* [11], which is our model defined in (2). We will first
obtain the general solution for the model (3), and show that only in the above special limit
the impact of localization becomes observable in the spectral correlations. In particular, we
will show that in this limit a gap appears in the density. We will also show as an explicit
example that in this case the number variance obtained from the two-level function shows
deviations from the Wigner distribution, towards a Poisson limit. Note that in the other limit
a=0and g — 0, w(® — 1/2x, and the model reduces to Dyson’s circular ensemble.

For simplicity, we will consider only the case where the symmetry parameter o = 2,
corresponding to the case without time reversal symmetry. We use the method of orthogonal
polynomials [1] and write the product term []__. fe!®» —el%| as a Vandermonde determinant
whose elements form a set of polynomials orthogonal with respect to the measure w(8). For
our particular choice of w(g) given in (3), these are the (normalized) Szegt polynomials
generalized by Askey [11]:

w(0) 0<g=<1 ag=<1 (3)

@ D4, Doold®q, oo }” 2 s

@, g) = nfz[
€ha)=q (@%q, g)n(ag, §)oolaq, oo

: C)
s i (agq; @)@, Qg™
e (2 DG Dn—s
The polynomials satisfy the orthogonality relation
1 [ 0
@ (€75 9) 0, (e QJw(B) 46 = b (5}

27 Jo
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where the overline denotes comlﬂlex conjugate. In terms of these polynomials the two-level
correlation function is given by [1]

N-1
Kni®, ¢) = Vw@)Vw@) ) e p(e). 6)
k=0
We now use the unit-circle analogue of the Christoffel-Darboux identity [16]
i D% )P (z2) — Da ()P
Z B O (z) = 2PN (z2) — O (z1) Py (22) D
o 1—z2/71

where z; = e/, 7, = ¢/® and we have used the notation cD*(z) = z"®,(1/z). We obtain the
large-N asymptotics of the polynomials by noting that the ratio
(g; a)nlag; @n-k
(9 gIn—lag; q)n
Thus for N — o0

(@ i(@?/2)* _ w(ag'/z; 9)o 2
Sy(z; ) =2V =z a‘q <1 3
&g g @ @259 ? @
where in the last line we have used the g-binomial theorem [12]. The two-level kernel in
the large-N limit can then be written in the general form

=1+ O(1/N).

Ry n S OO [cqlﬂzh q*/z2, a9 (21, 0422, q)m}‘” Sin[N (9 — $)/2 — A]
2z (@?/z1, 9" 22, ag 221, ag? [ 22; G)eo [sin(@ — ¢)/2]
(9)
where the shift A is given by
(ag'z1,aq"?/25; Q)m:|
A=Im|ln 10
[ (1221, 42 /22, @eo (10)

and we have used the notation {(x, v, ...,2; ¢)n = (x; @)n{¥; @)r - - - (2; g)n. For fixed g, in
the limit & ~ ¢, this can be simplified and we obtain

¢ i(0-+6)/2 gtz O+ gtz
-7 1 — -1 s
8720 =8 Re|e Zl—th‘-""m ae Zl—aqmﬂ/z (11)

Writing 1/(1 — xg**1/%) = Y32, (xq"*”z) and summing over £ first, we obtain the
following identity:

X gkt
1 — xgtH 2=

Z( g2 _1+1 (12)

=0 =

The factor {1 — g)/(1 — g"*!) — 1 for ¢ « 1, while it is 1/({ + 1) in the limit ¢ — 1.
In both limits the sum can be explicitly evaluated; it turns out that the result for g — 1
contains the g < 1 limit, giving a single expression valid for both limits. The result, in the
limit 8 — ¢, is -

8- 1 I—2a 0 - a2
A= 0l In g cost -+ a‘qg ' (13)
2 1—g 1—2./qcosé +g

Equations (9} and (13) constitute the solution for large N for the general model defined
by (3), in the limit & == ¢.
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We first consider the density of Ievels given by o (9) = Ky (9, #). Using equations (6),
(9) and (13), we get

1 1—2a./gcosd +a%g
c@)~ [+(1—g)NI"( 1—2./gc0s8 +q )] (14

Note that the density has a finite-N correction to the uniform density N/2x of the circular
ensemble. It is clear that in the N — co limit, the correction might survive only in the
g —» 1 limit such that the product (1 —g)N is kept finite. This is precisely the special limit,
namely ¢ = e~/¥ and @ = ¢™/* that defines model (2), and as we argued in the beginning,
this is indeed the limit where we expect the effect of localization to become observable in
the spectral correlations. In the rest of our discussions we will restrict ourselves to this limit
alone.

The expression (14) for the density of levels has one apparently very disturbing
feature. Although it is properly normalized to N, the density actually becomes negative for
sufficiently small values of 8. In fact the condition for the density to remain positive for
all values of 8 is that the paramneter A > A, = 2N (/e — 1). For 1 & A < A, the density
is positive only for 6 > 6, given by 2+/¢ — 1sin(6:/2) ~ 1/A. Thus with decreasing A, i.e.
increasing localization, 8, increases. We will now show that the negative density for A < A,
implies that there exists a gap in the spectrum for ¢ < 6;.

In order to understand the density for A < )., we will briefly use an alternative approach
based on the large-N ‘Coulomb-gas’ approximation [13]. If we write w(8) = ¢~V ®, we
can interpret the right—hand side of (1) as e~#, where the effective ‘Hamiltonian’

=a) In Z V(6n)

msEn
and the eigenvalues are given by the stationary condition

V'(0) = P f do o (d) cot? ;¢
H

where o (¢) is the density to be evaluated, V' is the derivative of V with respect to 6, P
denotes a principal valve integral, and the range [ of the integral is determined from the
normalization f ;3¢ o(¢) = N. Expanding cot(A — B) and using the normalization, we get
(@=2)

2 sm

(15)

a{g)

—_— (16)
@
cot £ — cot g

V@) =Neotd vesc2lp [
= N cot 3 + csc EP de¢
B

where we have allowed for the possibility that the eigenvalues lie in the region |@] >

6., 6. < m. For our model, V{§) = —In(l — cos@)¥/* + constant. Using x =
[cot(8/2)]/[cot(B./2)] and y = [cot(¢/2)]1/[cot(f./2)], we can rewrite (16) as
1 bx Vo
—N(I-I- )1+b2 P[ldym (17)

where we have defined b = cot®(8,/2), and f(y)dy = o(¢)dé. This intf;gral can be
inverted [14] to give

_ ONU+Mp [T—x_ (' [1+y y  dy
Fe) = Am2 1+fo_1 T—yl+b2y—x" (18)

The integral can be evaluated explicitly, giving
4 1+x
1+b1+bx?
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Going back to the original variables, we obtain

A a [2)
o (0) = % ! 1_ sin -§°1(cot2 —25 - cotzg i9] = o.. (19

The normalization condition gives

. B 1 1
smz_l_*_;‘\v 7 A
This agrees with our previous result on the existence of the gap as well as its dependence on
. A similar model, with w(6) = e@N/?<%3® hag been solved for the density in the saddle-
point approximation in the context of the large-N behaviour of U(N) lattice gauge theories
in two spacetime dimensions [15]. A similar gap was found (at 8 = ), which suggests
that the result is not peculiar to the particular model we chose; in particular the results from
our solvable model should be qualitatively valid for models involving qualitatively similar
constraints on Tr(S -+ ST).

The advantage of our solvable model is that we can go beyond the density and
evaluate the two-level kernel from which all n-point correlation functions can be calculated.
However, we cannot use equations (5) and (6) directly because of the gap in the spectrum,
The existence of the gap suggests that we must allow for this possibility from the beginning,
and replace (5} by

ol 297 =G

o P (€5 9)Onle?; QIw(B) d = 8. (20)
8

Although this means that the polynomials are no longer given exactly by (4), we note that
for small &, the density in the large-N limit is almost uniform everywhere except near
the edges. If we restrict ourselves to this uwniform density regime, far from the edges,
then the only real effect of the gap is to affect the normalization. We have taken this into
account simply by renormalizing the polynomials (4) by a factor ~C in (20) above. For
small values of 6;, equivalent to large A, the normalization constant is C = 1/(1 +¢/A),
where ¢ is a constant O(1). We will restrict our following discussions only to the regime
@ & m, where the density is approximately uniform, and the kernel Ky (6, ¢) becomes
translationally invariant:

c

in[IN@— ) +1/2
|KN(9—¢)!;:-'_E Sm[z ( )1+ /)]

sin[1(8 — ¢)]
where we have included the normalization constant C explicitly, and K (¢ — ) is the
complex conjugate of X(8 — ¢). In order to compare with the random-matrix theories,
we have to ‘unfold’ the spectrum by going to a new variable where the mean spacing
between nearest levels is unity [1]. This is obtained by choosing the new variables

(&, n) = (NC/2mY(1+1/1)(6, ¢). In terms of these variables the two-level kernel becomes
simply

21

[K@E—ml~C (22)

= —n)
Note that this looks identical to the two-level kemnel of the Gaussian random-matrix
theory [1], if we define a new set of variables (£*, 5*) = (1/C)(¢, 7). However, in this
new variable the mean spacing is not unity, but 1/C, so the ‘unfolding’ of the spectrum
will take vs back to the variable (£, 7).

The two-level kernel can now be used to calculate, e.g., the nearest-neighbour spacing
distribution or the long-range spectral rigidity. To demonstrate the qualitative effects of

sin [7(¢ — n)/C] I
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localization, we will explicitly calculate the number variance for an interval s, defined as
(3n)? = (n?) — (n)2. Using r = ¢ — 1, this is given in terms of the kernel as [1]

@BnY=s —2fsdr (s — K@
[}

Cc? -1 B 1
;;,;[In(ZHS/C) +y+11+0(7) C= T

where y is Euler’s constant. As A — oo, the linear dependence on s cancels exactly and
the expression reduces to the universal logarithmic dependence on s characteristic of the
Wigner distribution. However, for any finite A, there is a leftover linear dependence on 5
with the slope increasing with decreasing A (increasing focalization). This clearly signals
a crossover from a Wigner towards a Poisson distribution (for which (3n)? = 5) similar to
that seen in the case of unbounded eigenvalues [6], and also similar to the crossover seen in
numerical studies of the number variance for S-matrix eigenvalues [9] describing transport
in mesoscopic conductors {7] as well as for A, statistics (a related measure of the long-
range spectral rigidity [1]) of the Flouquet-matrix eigenvalues describing time evolution of
the Fermi-accelerator model [8]. Note that if A is related to a physical parameter like the
conductance which itself scales with N, then starting from an intermediate case for finite &
as given in (23), the distribution will scale towards either Wigner or Poisson limit depending
on whether A scales towards. ¢ or 0 with increasing N.

We briefly point out that the general model {3) might include other physically interesting
models. For example in the limit @ = 0 and ¢ — 17, the function [17]

=S[1-—-C]+

(23)

w(f) — exp [— 1 cos? 9]
l1—g 2

which is the model considered in [15].
" In summary, we have constructed a one-parameter solvable model (as a special limit
of a more general two-parameter solvable model) for the joint probability distribution of
eigenvalues of unitary matrices which, in the large-& limit, leads to a gap in the density.
The gap increases as a function of the parameter. By analysing the effect of the gap on the
number variance, we argued that the model qualitatively describes the effect of localization.

KAM thanks Y Chen for valuable comments on the manuscript, and Z Qiu for a discussion
on [15]. Research at USF was partially supported by the NSF under grant DMS 9203659,
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