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We consider several limiting cases of the joint probability distribution for a random matrix ensemble with
an additional interaction term controlled by an exponent γ (called the γ ensembles). The effective potential,
which is essentially the single-particle confining potential for an equivalent ensemble with γ = 1 (called the
Muttalib-Borodin ensemble), is a crucial quantity defined in solution to the Riemann-Hilbert problem associated
with the γ ensembles. It enables us to numerically compute the eigenvalue density of γ ensembles for all γ >

0. We show that one important effect of the two-particle interaction parameter γ is to generate or enhance
the nonmonotonicity in the effective single-particle potential. For suitable choices of the initial single-particle
potentials, reducing γ can lead to a large nonmonotonicity in the effective potential, which in turn leads to
significant changes in the density of eigenvalues. For a disordered conductor, this corresponds to a systematic
decrease in the conductance with increasing disorder. This suggests that appropriate models of γ ensembles can
be used as a possible framework to study the effects of disorder on the distribution of conductances.
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I. INTRODUCTION

A generalized random matrix model with additional inter-
actions [1], called the γ ensembles, was introduced recently as
a solvable toy model for three-dimensional (3D) disordered
conductors. The joint probability distribution (jpd) of the N
non-negative eigenvalues xi for these γ ensembles has the
form

p({xi}; θ, γ ) ∝
N∏

i=1

w(xi )
∏
i< j

|xi − x j |
∣∣xθ

i − xθ
j

∣∣γ ,

0 < γ , 1 < θ < ∞. (1.1)

Here we assume the convention w(x) = e−NV (x), so that the
empirical distribution of the particles (aka the equilibrium
measure) converges as N → ∞. In [1], the parameter γ

was restricted to 0 < γ � 1, but the method developed there
allows the evaluation of the density of eigenvalues of the γ en-
sembles for any γ > 0, θ > 1 and for any well behaved V (x).
In particular, it was shown that the jpd for the γ ensembles can
be mapped onto the Muttalib-Borodin (MB) ensembles [2–8]
[which has the same jpd as Eq. (1.1), with γ = 1], by replac-
ing the external potential V (x) with a γ -dependent effective
potential Veff (x; γ ). This effective potential was calculated ex-
plicitly for θ = 2 by numerically solving the Riemann-Hilbert
(RH) problem associated with the jpd of the γ ensembles. This
allowed the calculation of the corresponding exact density
of the eigenvalues σ (x), which can be used to calculate the
average conductance of a disordered conductor.

In terms of the variables in Eq. (1.1), the average di-
mensionless conductance per channel gchannel of a disordered
conductor (in units of the quantum conductance e2/h̄) is given

*Corresponding author: yadavswap@gmail.com

by [9,10]

gchannel =
∫ ∞

0

σ (x)

cosh2 √
x

dx. (1.2)

Clearly, a large peak in the density near the origin corresponds
to a large conductance, or a metal, while a density which is
small near the origin and spread out at large values of x will
correspond to a small conductance, or an insulator.

As shown in [1], while the exact solution of the density for
Eq. (1.1) for θ = 2 shows a significant change in the density
as a function of the two-particle interaction parameter γ , the
change in density is not large enough to affect the conductance
g significantly. Thus the question arises: What is the role of
the parameter γ in the transition from metallic to insulating
behavior of a disordered quantum conductor? In this paper we
address this question in three steps.

First, we show that if we allow 1 < θ < 2, then the ef-
fective potential near the origin becomes nonmonotonic for
γ < 1, where the degree of nonmonotonicity increases with
decreasing γ . This is significant because such nonmonotonic
effective potential can in principle give rise to a transition in
density from hard edge to soft edge, which means a transition
from a diverging to a non diverging density near the origin,
as shown by Clays and Romano (CR) [11]. As a bonus, we
find that for Laguerre β ensembles, the eigenvalue density
for all values of β � 1 can be obtained by considering the
θ → 1 limit of the γ ensembles, with β = γ + 1, as shown in
Appendix A.

Second, while the CR model (which belongs to the
MB ensembles) shows a transition from a diverging to
a nondiverging density near the origin by changing the
nonmonotonicity parameter ρ of the single-particle potential
V (x) = x2 − ρx, we show that for a fixed value of ρ, a similar
transition occurs as a function of the two-particle interaction
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parameter γ . This shows that the role of the parameter γ in
the γ ensembles is qualitatively similar to a nonmonotonicity
parameter in the single-particle potential.

Third, we consider a realistic phenomenological single-
particle potential for a disordered conductor of the form
V (x) = �x − (1/2) ln sinh2 √

x where the logarithmic term
arises naturally as a Jacobian factor [12] and � is also a
function of γ . This model produces a transition in the density
from a peak near the origin to a density with a gap near
the origin as γ is reduced systematically from 1, the gap
increasing with decreasing γ . This change in the density is
sufficient to result in a transition from a metallic to an in-
sulating conductance. While such a toy model is clearly not
sufficient to describe metal-to-insulator transition in actual
physical systems, the results suggest that the γ ensembles
with appropriate single-particle potentials can be used as a
possible framework to study the distribution of conductances
across the metal-insulator transition.

The paper is organized as follows. In Sec. II we give a
brief outline of the numerical solution to the RH problem
for γ ensembles. The equilibrium density can be obtained
replacing external potential V (x) with γ -dependent effective
potential Veff (x; γ ). In Secs. III–V we follow the three steps
mentioned above and systematically explore the role of the
parameter γ . We summarize our results in Sec. VI. Results
obtained as a bonus for the well-known β ensembles as a
θ → 1 limit of the γ ensembles are discussed in Appendix
A. Some mathematical details are given in Appendix B.

II. THE EQUILIBRIUM PROBLEM FOR γ ENSEMBLE

Here we give a brief overview of the solution to the RH
problem of γ ensembles and the computation of its eigenvalue
density. The complete analysis can be found in [1]. Consider
the γ ensembles defined by the jpd in Eq. (1.1). The unique
equilibrium measure μ that minimizes the energy functional

1

2

∫∫
ln

1

|x − y|dμ(x)dμ(y)

+ γ

2

∫∫
ln

1

|xθ − yθ |dμ(x)dμ(y) +
∫

V (x)dμ(x) (2.1)

satisfies the Euler-Lagrange (EL) equation∫
ln |x − y|dμ(y) + γ

∫
ln |xθ − yθ |dμ(y) − V (x) = �

(2.2)

if x lies inside the support of density and the equality sign is
replaced by < if x lies outside the support. Here � is some
constant. In this section we give a formalism for hard-edge
support where we assume that the eigenvalue density lies on
support [0, b] for some b > 0. The similar formalism for soft
edge for which density lies on support [a, b] with b > a >

0, is given in Appendix B. In formulating the RH problem
from the above EL equations, a crucial role is played by the
Joukowsky transformation (JT) for hard edge,

Jc(s) = c(s + 1)

(
s + 1

s

)1/θ

, (2.3)

FIG. 1. Schematic figure for the mapping of JT for a hard-edge
problem. Here D is the region inside the contour ν1, ν2 (D̄ is the
region outside). Hθ is the angular region at the top right between
the lines (5), and (6). C denotes the complex plane.

where s is a complex variable. The points in the complex
domain, which are mapped by the JT on to a real line, form a
contour ν given by

r(φ) = tan

(
φ

1 + θ

)/[
sin φ − cos φ tan

(
φ

1 + θ

)]
,

(2.4)

where 0 < φ < 2π is the argument of s in the complex plane.
Schematic Fig. 1 shows mapping of all points on contour ν to
two different regions in the complex plane by the JT Jc(s). By
defining complex transforms

g(z) ≡
∫ b

0
log(z − x)dμ(x), z ∈ C\(−∞, b],

g̃(z) ≡
∫ b

0
log(zθ − xθ )dμ(x), z ∈ Hθ\(0, b],

(2.5)

with their derivatives G(s) ≡ g′(s), G̃(s) ≡ g̃′(s) and the func-
tion M(s) as

M(s) ≡
{

G[Jc(s)] for s ∈ C\D̄
G̃[Jc(s)] for s ∈ D\[−1, 0],

(2.6)

the sum and difference of the EL equations can be written as

M+(s1) + γ M−(s1) + M−(s2) + γ M+(s2) = 2V ′[Jc(s)],

M+(s1) − M−(s2) + M−(s1) − M+(s2) = 0. (2.7)

Here s1 ∈ ν1 and s2 ∈ ν2 (see Fig. 1). Equation (2.7), together
with some of the limits of M(s), form the RH problem for
M(s). The RH problem in terms of N (s) ≡ M(s)Jc(s) is then
as follows.

RH problem for N: (1) N is analytic in C \ ν.
(2) N+(s1) + γ N−(s1) + N−(s2) + γ N+(s2)
= 2V ′[Jc(s)]Jc(s),

N+(s1) − N−(s2) + N−(s1) − N+(s2) = 0. (2.8)

(3) N (0) = θ and N (s) → 1 as s → ∞. We further define
a function f such that

f [Jc(s)] ≡ N+(s) + N−(s). (2.9)
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This gives a solution to the RH problem of N (s) as

N (s) =
{ −1

2π i

∮
ν

f [Jc (ξ )]
ξ−s dξ + 1, s ∈ C\D̄,

1
2π i

∮
ν

f [Jc (ξ )]
ξ−s dξ − 1, s ∈ D\[−1, 0].

(2.10)

Also from the RH problem for N (s), the constant c of the JT
in Eq. (2.3) satisfies the equation

1

2π i

∮
ν

f [Jc(s)]

s
ds = 1 + θ. (2.11)

Thus the sum equation in the RH problem for N (s) can be
rewritten as

(1 − γ )[N+(s1) + N−(s2)] + 2γ f [Jc(s)] = 2V ′[Jc(s)]Jc(s).
(2.12)

Defining the inverse mapping of JT as

s = J−1
c (x) = h(x), (2.13)

with (s1)+ = h(y); (s2)− = h̄(y); s1 = h(x); and s2 = h̄(x),
we substitute for [N+(s1) + N−(s2)] using Eq. (2.10) and the
inverse mapping. We finally get the integral equation,

f (y; γ ) = V ′(y)y

γ
− 1 − γ

γ

[
1 + 1

2π

∫ b

0
f (x; γ )φ(x, y)dx

]
,

(2.14)
where

φ(x, y) = Im

[(
1

h(y) − h(x)
+ 1

h(y) − h(x)

)
h

′
(x)

]
. (2.15)

We solve Eq. (2.14) for f (y; γ ) and Eq. (2.11) for c numeri-
cally, self-consistently. The new effective potential Veff (x; γ )
is related to f (x; γ ) by

V ′
eff (x; γ ) = f (x; γ )

x
. (2.16)

The eigenvalue density for this effective potential is given by
[1],

σ (y; γ ) = −1

2π2γ y

∫ 0

b
xV ′

eff (x; γ )χ (x, y)dx,

χ (x, y) = Re

[(
1

h(y) − h(x)
− 1

h(y) − h(x)

)
h′(x)

]
. (2.17)

In summary, starting with a jpd of the γ ensemble with
some confining potential V (x), it is possible to map the
problem to an MB ensemble (γ = 1), but with an effective
potential Veff(x, γ ) given by Eq. (2.16). Then, the density of
the eigenvalues for such an MB ensemble can be obtained
using Eq. (2.17). We will use this prescription in the following
sections to obtain the density of eigenvalues for several differ-
ent toy models. We will show that one effect of the parameter
γ is to add nonmonotonicity to the effective potential.

III. NONMONOTONIC EFFECTIVE POTENTIAL FOR
1 < θ < 2

As a first step towards understanding the role of the pa-
rameter γ in the γ ensembles, we consider a range of the
parameter θ , beyond the value θ = 2 considered in detail in
[1]. The idea is to show first of all that for a certain range of
θ , the effective potential can become nonmonotonic near the

origin. Within that range, the goal is then to choose a particu-
lar fixed value of θ that shows a significant nonmonotonicity
and systematically study the effective potential as well as the
eigenvalue density as a function of γ . This would allow us to
focus on the role of γ in the γ ensembles. We will restrict
ourselves to the case γ < 1, which is expected to be relevant
for disordered quantum conductors.

Figure 2 shows the effective potentials near the origin
for γ = 0.6 and a range of values for θ between 1 and 2.
We have shown in [1] that the effective potential for θ = 2
monotonically goes to zero at the origin. As θ is reduced from
2, the effective potential develops a nonmonotonicity. The
minima of the effective potential gradually becomes deeper
and moves away from the origin. Later as θ moves closer
to 1, the depth of the minima of the effective potential de-
creases and the minima shifts closer to the origin. Thus with
decreasing nonmonotonicity, we expect the effective potential
to become linear for θ = 1 as predicted by Eq. (A5). We have
also verified this expected analytical result for the γ > 1 case.

Figure 2 suggests that even for θ close enough to θ = 1, the
effect of γ on the nonmonotonicity could be observable. We
therefore choose θ = 1.0001 and a linear external potential,
V (x) = 2x. Figure 3 shows the effective potential for different
values of γ , where we include γ > 1 as well to show that the
results are qualitatively different.

Note that the limit θ = 1 is identical to the well-known
β ensembles with β = γ + 1. Analytical results for such La-
guerre β ensembles obtained in Appendix A suggest that the
nonmonotonicity of the effective potential should disappear
at θ = 1. The present formalism allows us to consider the
θ → 1 limit and thereby obtain the effective potential as well
as the density for β ensembles for arbitrary β, as shown in the
Appendix.

To explore how the nonmonotonicity changes with the
single-particle potential, we consider the γ ensemble with a
quadratic single-particle potential V (x) = αx2, γ = 0.7, and
θ → 1. We choose α = 0.2 so that the potential is much
weaker near the origin compared to the linear potential. Fig-
ure 4 shows that the minima of the effective potential is shifted
significantly away from the origin and is deeper compared to
the effective potentials in Fig. 3.

IV. HARD-EDGE TO SOFT-EDGE TRANSITION
FOR EIGENVALUE DENSITY

In the previous section we showed that the effect of de-
creasing the exponent γ from 1 in the γ ensembles with either
a linear or a quadratic single-particle potential is equivalent
to adding a nonmonotonicity in the effective potential for the
corresponding MB ensembles. It has been shown in [10] that
such a minima in confining potential, if deep enough, can
produce a transition from a diverging eigenvalue density at the
hard edge to a nondiverging density. However, the nonmono-
tonic effective potentials we have computed in these cases for
different γ and different θ are not sufficient to produce the
hard-edge to soft-edge transition in the eigenvalue density. In
this section we show that starting with a given nonmonotonic
potential of the form V (x) = x2 − ρx, with fixed ρ = 2.35 for
which the density is still diverging near the origin, changing
γ alone is sufficient to produce such a transition. Note that
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FIG. 2. Effective potentials close to the origin and over the full support, for γ = 0.6 and different values of θ . Near the origin, the minima
of the nonmonotonic effective potential first moves away from the origin and then moves towards the origin as θ is reduced. Note that the
effective potential is monotonic for θ = 2 [1]. Also, consistent with the analytical result for θ = 1, the nonmonotonicity of effective potential
near the origin reduces as θ → 1.

this is qualitatively different from the CR model [10], where
a transition is obtained by changing the nonmonotonicity pa-
rameter ρ in the single-particle potential, while we keep ρ

fixed, and change the two-particle interaction parameter γ

which is expected to be related to the strength of disorder in a
three-dimensional quantum conductor.

We choose the interaction parameter θ = 1.2 because the
results from Fig. 2 suggest that for a given γ , the nonmono-
tonicity in the effective potential is qualitatively the largest
for θ between 1.1 and 1.5. For all γ < 1, we begin with the
assumption that the support of density is hard edge (i.e., the
support starts at the origin) and we use the hard-edge formal-
ism to compute the eigenvalue density. If for some γ < 1,
our assumption of hard-edge support for density is wrong
and the actual support is soft edge (i.e., the support starts
away from the origin), then the hard-edge formalism gives

FIG. 3. Effective potential near the origin for different γ , V (x) =
2x, and θ = 1.0001.

a negative (unphysical) density near origin. In that case, we
switch to soft-edge formalism, described in Appendix B, and
compute the non-negative density with soft-edge support. As
the γ decreases from 1, the effective potential increases (be-
comes more and more nonmonotonic) near origin, as shown
in Fig. 5. For some critical value of γ between 0.5 and 0.6,
this added nonmonotonicity in the effective potential brings
about the hard-edge to soft-edge transition in the density (see
Fig. 6). As γ is reduced further, the soft edge of the support of
the density near origin moves further and further away from
origin, increasing the gap in the spectrum.

V. PHENOMENOLOGICAL MODEL FOR 3D
DISORDERED CONDUCTORS

In this section we consider a phenomenological model
based on results from [12,13]. We will restrict ourselves to

FIG. 4. Effective potential near the origin for quadratic potential
V (x) = 0.2x2, γ = 0.7, and θ = 1.0001.
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FIG. 5. Effective potential for θ = 1.2, V (x) = x2 − 2.35x, and
different γ .

3D only; for a brief discussion of how the dimensionality
enters the current formulation, see Appendix C. The jpd for
the ensemble is given by [12–16]

p({xi}; γ ) ∝
N∏

i=1

w(xi, γ )
∏
i< j

|xi − x j ||s(xi) − s(x j )|γ ,

(5.1)
w(x, γ ) = e−NV (x,γ ),

where s(x) = sinh2 √
x.

The Joukowsky transformation for the interaction term,
| sinh2 √

xi − sinh2 √
x j |, is not available and hence the ex-

plicit numerical solution to the RH problem associated with
this jpd cannot be obtained. Fortunately, the xθ interaction

term in γ ensembles with θ = 1.8 and the sinh2 √
x interaction

term in Eq. (5.1) have very similar qualitative behavior over a
reasonable range of support for the eigenvalue density. Thus,
we can use the γ -ensemble interaction term with θ = 1.8 as a
solvable toy model. The single-particle potential V (x, γ ) has
a dominant linear dependence on x in the strongly disordered
regime, whose strength depends on the parameter γ . It also
includes a logarithmic part arising from a Jacobian of transfor-
mation. In the strong disorder regime, the total single-particle
potential is given by [12]

V (x, γ ) = �x − 1
2 ln(sinh 2

√
x), (5.2)

where the coefficient � depends on disorder, but its functional
relationship with the two-particle interaction parameter γ is
not known in general. The relationship has been discussed
only in the strongly disordered insulating regime [12] where
� ∝ γ , with γ 	 1. Starting from the strongly disordered
limit, Fig. 7 in Ref. [12] suggests a sharp sigmoidal increase
in γ as disorder is decreased; this signals a transition from
the strongly disordered insulating regime towards a weakly
disordered metallic regime. Finally in the metallic regime
corresponding to γ ∼ 1, the parameter � is expected to be
very large, although there is no numerical guideline on its γ

dependence. A simple one-parameter model that incorporates
the strongly disordered insulating limit as well as the rapid
change at the transition as suggested by the numerical studies
is given by � = aγ /[1 + ln 1−γ

γ
], where a is a phenomenolog-

ical parameter that loosely characterizes the transition point.
In the spirit of a toy model, we do not try to fix a. Instead,
since our numerical results converge progressively slowly for
γ � 0.5, we choose a = 0.01 which generates a transition for
γ ∼ 0.73. Starting from the insulating side and systematically

FIG. 6. The eigenvalue density, for θ = 1.2, V (x) = x2 − 2.35x, and different values of γ . Inset shows the corresponding density near the
origin. For γ = 0.5 and 0.4, the hard-edge eigenvalue densities become negative near the origin, implying that the assumption of hard-edge
support is wrong and true density has a soft-edge support. The last two panels (the small kinks in the density are numerical artifacts and go
away with finer grid) show the true eigenvalue density for γ = 0.5 and 0.4 with the soft-edge support.

042137-5



YADAV, ALAM, MUTTALIB, AND WANG PHYSICAL REVIEW E 103, 042137 (2021)

FIG. 7. The eigenvalue density, for θ = 1.8, V (x) = aγ

1+ln 1−γ
γ

x − 1
2 ln(sinh 2

√
x) with a = 0.01 and different values of γ . All densities have

soft-edge support.

increasing γ , we stop where � diverges [at γ = e/(1 + e)],
and therefore reaches the metallic limit. Note that it is easy
to construct a model with more parameters to include the
weakly disordered (metallic) regime within this formulation,
but since our focus is near the transition, which occurs at
strong disorder, we will use the simplest one-parameter model
discussed above.

The effect of the logarithm in V (x, γ ) is twofold: First, it
provides a starting nonmonotonicity when combined with the
dominant linear single-particle potential. Second, it removes
any divergence at the origin. Thus unlike the CR model, a
metallic regime in this case will correspond to a peak in the
density near the origin (instead of a diverging density), while
an insulating regime will correspond to zero or exponentially
small density (a gap) over a finite range near the origin.
The metal-to-insulator transition in this case will therefore
correspond to the destruction of the peak in the density of
eigenvalues near the origin.

Since there is no divergence at the origin, we use the
soft-edge formalism and compute the eigenvalue densities
for different values of γ . Note that in this phenomenological
model, both the two-particle interaction term and the single-
particle potential change as γ is changed. Figure 7 shows
the change in the density as γ is increased systematically.

At γ = 0.7 the density has a large gap near the origin and
is spread out with no peak. As γ increases, the gap becomes
smaller and the density starts to develop a peak near the origin.
The peak becomes very large at γ = 0.731 05, which is the
largest value our model allows us to consider. Thus there is a
clear “transition” in the density from zero near the origin to a
large peak.

Clearly, our simplified solvable toy models cannot provide
a quantitative description of a three-dimensional disordered
system. Nevertheless, the toy model discussed here can pro-
vide qualitatively correct behavior for some of the quantities
that are not sensitive to the details of the system parameters.
Here we use Eq. (1.2) to compute gchannel, the average con-
ductance per channel (in units of the conductance quantum
e2/h̄). Figure 8 shows how this quantity changes with γ . At
γ = 0.70 where the density has a large gap near the origin, the
conductance is very small, and it remains small as long as the
gap remains appreciable, up to γ = 0.72. Beyond γ = 0.725
the gap in the density starts to close and a peak near the origin
starts to grow, and the conductance starts to increase rapidly. It
reaches the value gchannel ∼ 1 for γ = 0.731 05 which corre-
sponds to the metallic regime. Thus a transition in the density
from a peak near the origin to a large gap can be associated
with a metal-to-insulator transition in the conductance.
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FIG. 8. The average conductance gchannel, computed from eigen-
value densities for different γ from Fig. 7.

VI. SUMMARY AND CONCLUSION

The eigenvalue density of γ ensembles has previously been
computed by solving the corresponding Riemann-Hilbert
problem. In this paper we use the same method to explore the
role of the parameter γ by considering various solvable toy
models. First, we show that for different values of θ between
1 and 2, the effective potentials for linear as well as quadratic
single-particle potentials can become nonmonotonic near the
origin for γ < 1. The minimum of the effective potential
shifts further away from the origin as γ is decreased systemat-
ically. Second, we show that in a CR type model with a fixed
nonmonotonicity, reducing γ can give rise to a transition from
a diverging to a nondiverging density. Finally, we show that
a toy model that includes a linear as well as a logarithmic
single-particle potential as suggested for three-dimensional
disordered conductors, γ ∼ 1 gives conductance gchannel ∼ 1,
while γ 	 1 corresponds to gchannel 	 1. For our particular
choice of the model, it also shows a rapid change in the
conductance at the transition region between the two limits.
While this by itself cannot describe a true metal-to-insulator
transition, it provides a framework where, in principle, one
should be able to study the full distribution of conductances
P(g) across a metal-insulator transition. This is because given
a jpd p({xa}) of the eigenvalues, the distribution of conduc-
tances P(g) can be expressed as [13]

P(g) =
∫ N∏

a

dxa p({xa})δ

(
g −

∑
a

1

cosh2 √
xa

)
. (6.1)

Considering the transition in terms of the full distribution
rather than in terms of the average (or typical) conductance
is particularly important. This is because even in quasi-one-
dimension, where γ = 1 for all disorder [17] and therefore
no transition exists [18], P(g) has a highly asymmetric “one-
sided log-normal distribution” at the crossover point [19],
which is expected to remain qualitatively valid in three di-
mensions near the metal-insulator transition that happens at
a critical value γ = γc < 1. It is also known from numerical
studies in three dimensions that at strong disorder, P(g) has a
large variance as well as a finite skewness [20]. The solvable γ

ensembles with appropriate single-particle potentials provide

a possible framework to analytically study a broad and highly
asymmetric distribution of conductances across a transition.

As a by-product, we find that the limit θ → 1 also corre-
sponds to the Laguerre β ensembles. This allows us to use
the model to numerically compute the eigenvalue density for
Laguerre β ensembles for all β > 1. The results agree with
various expected analytical expressions including the ones
from the exact analytical solution to the RH problem for
θ = 1. This shows the applicability of our method for general
γ ensembles with different values of θ > 1 and γ > 0.
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APPENDIX A: LAGUERRE β ENSEMBLES

The Laguerre β ensembles are characterized by the jpd

p({xi}) ∝
N∏

i=1

w(xi )
∏
i< j

|xi − x j |β,

w(x) = e−N (β/2)x, β > 1. (A1)

The limiting eigenvalue density of Laguerre β ensembles for
β = 1, 2, and 4 is known analytically [21,22], and later it was
shown [23,24] that the same expression is also valid for all val-
ues of β. In Eq. (1.1) if we take limit θ → 1 and V (x) = β

2 x,
we get jpd of Laguerre β ensembles with β = 1 + γ . Thus
in the analysis of Sec. III, if we take θ → 1 and V (x) = β

2 x,
we can compute eigenvalue density for Laguerre β ensembles
for any β > 1. Note that Eqs. (2.14)–(2.17) are valid only for
θ > 1. By choosing θ = 1.0001 for the θ → 1 limit, we can
obtain numerical results valid for the β ensembles. Later in
this Appendix we analytically solve the RH problem explicitly
for the θ = 1 case and show that the results are consistent with
numerical solution for θ → 1. As θ → 1 the shape of contour
ν approaches a circle.

Once the contour and the mapping (and consequently the
inverse mapping) is known, we solve Eqs. (2.11) and (2.14)
self-consistently to find f (x; β ). Then the effective potential
and the eigenvalue density are computed with Eqs. (2.16) and
(2.17), respectively, for β = 1 + γ .

1. Eigenvalue density for Laguerre β ensembles

In Fig. 9 we show the effective potentials for different
β over the full support of density. The effective potential
becomes less and less converging as β increases from 1.4 to 4
(or γ increases from 0.4 to 3). Figure 11 shows the densities
calculated from Eq. (2.17) for different values of β. These
numerical results also agree very well (see Fig. 10) with the
analytical expression

σ (x) =
{

2
π

1
β

(
β−x

x

)1/2
for 0 < x < β

0 for x � β,
(A2)

with the density diverging near the origin as σ (x) →
2
π
β−1/2x−1/2 as x → 0.
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FIG. 9. Effective potential for different β and V (x) = 2x.

Figure 11 shows that the support of the densities increases
as β increases. The numerical densities near origin when fitted
to curve σ (x; β ) = axb show that the exponents b are all − 1

2
for different β. Figure 12 shows the prefactors a as a function
of β.

2. RH problem for θ = 1

In this section we derive the analytic form of the effective
potential for the Laguerre β ensemble by exactly solving
the RH problem for θ = 1, γ > 0. The external potential for
the Laguerre β ensemble is V (x) = β

2 x = 1+γ

2 x. For θ = 1,
contour ν is a unit circle in complex plane centered at origin.
The regions inside and outside the contour ν are both mapped
onto the same complex region C\[0, b], similar to the contour
shown in Fig. 1. Every point on the contour is mapped onto a
point on the real line in [0, b].

When θ = 1, Eq. (2.5) gives g(z) = g̃(z). M(s) is then
defined as

M(s) ≡
{

G[Jc(s)] for s ∈ C\D̄
G[Jc(s)] for s ∈ D\[−1, 0]. (A3)

FIG. 10. Density for β = 4. The dotted line shows the numerical
result compared to the analytical result [see Eq. (A2)] shown with a
bold line.

FIG. 11. Densities for different β and V (x) = 2x.

Now since g̃+(x) = g+(x), region (1) and region (3) in
the schematic mapping are one and the same. Similarly
g̃−(x) = g−(x) means region (2) and region (4) are the same.
In terms of functions M(s), these relations can be written as
M+(s1) = M+(s2) and M−(s1) = M−(s2) (see Fig. 1). With
N (s) ≡ M(s)Jc(s), Eq. (2.8) now becomes

(1 + γ )[N+(s1) + N−(s1)] = 2V ′[Jc(s)]Jc(s), (A4)

where Jc(s) = Jc(s1) = Jc(s2) = x ∈ [0, b]. With f [Jc(s)] de-
fined according to Eq. (2.9) and V (x) = β

2 x = 1+γ

2 x for
Laguerre β ensembles, we finally get

f (x) = x, Veff (x) = x. (A5)

Equation (A5) tells us that the nonmonotonicity of the effec-
tive potentials previously shown for γ < 1 should disappear
when θ = 1.

In the RH problem for θ = 1, if we choose V (x) = 2x
instead of β

2 x, Eq. (A4) gives f (x) = Veff (x) = 4
1+γ

x. The
numerical results obtained for the effective potential of the
γ ensemble with θ = 1.0001 and V (x) = 2x agree very well
with this analytic expression (see Fig. 9).

FIG. 12. Densities near the origin are fitted to function σ (x; β ) =
axb. The points show prefactors a for different β. The solid line
shows the analytical result from Eq. (A2).
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FIG. 13. Schematic figure for the mapping of JT for a soft-edge
problem.

APPENDIX B: SOFT-EDGE FORMALISM

For soft-edge support, Joukowsky transfromation is given
by

Jc1,c0 (s) = (c1s + c0)

(
s + 1

s

)1/θ

, (B1)

where s is a complex variable. Note that the transformation
now contains two parameters c0 and c1 to include the two
supports for the soft edges given by [a, b] where both a and b
are real numbers such that b > a > 0. The contour ν (which
is a locus of points in the complex plane mapped onto the real
line) corresponding to Jc1,c0 (s) is given by

x(φ) = r(φ) cos φ − 1

r2(φ) − 2r(φ) cos φ + 1
,

y(φ) = −r(φ) sin φ − 1

r2(φ) − 2r(φ) cos φ + 1
(B2)

and r(φ) solves

r2(φ) +
[

c1

c0
cos φ − sin φ

tan φ

θ

− 2 cos φ

]
r(φ)

+ 1 − c1

c0
= 0, (B3)

where 0 < φ < 2π is the argument of s+1
s in the complex

plane. Schematic Fig. 13 shows contour ν and mapping by
the JT Jc1,c0 (s).

The complex transforms are now defined on the soft-edge
support,

gs(z) ≡
∫ b

a
log(z − x)dμ(x), z ∈ C\(−∞, b],

g̃s(z) ≡
∫ b

a
log(zθ − xθ )dμ(x), z ∈ Hθ\(a, b],

(B4)

with their derivatives Gs(s) ≡ g′
s(s), G̃s(s) ≡ g̃s

′(s) and the
function Ms(s) as

Ms(s) ≡
{

Gs[Jc1,c0 (s)] for s ∈ C\D̄
G̃s[Jc1,c0 (s)] for s ∈ D\[−1, 0];

(B5)

the sum and difference of the EL equations can be written as

Ms+(s1) + γ Ms−(s1) + Ms−(s2) + γ Ms+(s2)

= 2V ′[Jc1,c0 (s)],

Ms+(s1) − Ms−(s2) + Ms−(s1) − Ms+(s2) = 0.

(B6)

Here s1 ∈ ν1 and s2 ∈ ν2 (see Fig. 13). Equation (B6), together
with some of the limits of Ms(s), form the RH problem for
Ms(s). The RH problem in terms of Ns(s) ≡ Ms(s)Jc1,c0 (s) is
then as follows.

RH problem for N: (1) Ns is analytic in C \ ν.
(2) Ns+(s1) + γ Ns−(s1) + Ns−(s2) + γ Ns+(s2)
= 2V ′(Jc1,c0 (s))Jc1,c0 (s)

Ns+(s1) − Ns−(s2) + Ns−(s1) − Ns+(s2) = 0. (B7)

(3) Ns(0) = θ , Ns(−1) = 0, and Ns(s) → 1 as s → ∞.
We further define a function fs such that

fs[Jc1,c0 (s)] ≡ Ns+(s) + Ns−(s). (B8)

This gives the solution to the RH problem of Ns(s) as

Ns(s) =
{ −1

2π i

∮
ν

fs[Jc1,c0 (ξ )]
ξ−s dξ + 1, s ∈ C\D̄

1
2π i

∮
ν

fs[Jc1,c0 (ξ )]
ξ−s dξ − 1, s ∈ D\[−1, 0].

(B9)

Also from the RH problem for Ns(s), the constants c1 and c0

of the JT in Eq. (B1) satisfy the equations

1

2π i

∮
ν

fs[Jc1,c0 (s)]

s
ds = 1 + θ,

1

2π i

∮
ν

fs[Jc1,c0 (s)]

s + 1
ds = 1.

(B10)

Thus the sum equation in the RH problem for Ns(s) can be
rewritten as

(1 − γ )[Ns+(s1) + Ns−(s2)] + 2γ fs[Jc1,c0 (s)]

= 2V ′[Jc1,c0 (s)]Jc1,c0 (s).
(B11)

Defining the inverse mapping of JT as

s = J−1
c1,c0

(x) = hs(x), (B12)

with (s1)+ = hs(y); (s2)− = h̄s(y); s1 = hs(x); and s2 =
h̄s(x), we substitute for [Ns+(s1) + Ns−(s2)] using Eq. (B9)
and the inverse mapping. We finally get the integral equation,

fs(y; γ )= V ′(y)y

γ
−1 − γ

γ

[
1+ 1

2π

∫ b

a
fs(x; γ )φs(x, y)dx

]
,

(B13)
where

φs(x, y) = Im

[(
1

hs(y) − hs(x)
+ 1

hs(y) − hs(x)

)
hs

′
(x)

]
.

(B14)
We solve Eq. (B13) for fs(y; γ ) and Eq. (B10) for c1 and
c0 numerically, self-consistently. The new effective potential
Veff (x; γ ) is related to fs(x; γ ) by

V ′
eff (x; γ ) = fs(x; γ )

x
. (B15)

The eigenvalue density for this effective potential is given by
[1],

σs(y; γ ) = −1

2π2γ y

∫ a

b
xV ′

eff (x; γ )χs(x, y)dx,

χs(x, y) = Re

[(
1

hs(y) − hs(x)
− 1

hs(y) − hs(x)

)
h′

s(x)

]
.

(B16)
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APPENDIX C: TRANSPORT IN DIMENSIONS
OTHER THAN d = 3

In the present work we have focused on transport in
three dimensions (d = 3) only. In the absence of electron-
electron interactions, there exists a metal-insulator transition
only for d > 2 with d = 2 being a critical dimension [18].
How does the dimensionality enter in our formulation? The
short answer is that the parameter γ has a highly nontrivial
dimensionality dependence, which results in having, e.g., a
true metal-insulator transition in 3D but only a crossover
in quasi-one-dimesion (Q1D). In this Appendix, we briefly
outline how this dimensionality dependence of γ is included
in the present formulation.

When a disordered conductor of cross section Ld−1 and
length Lz is connected to two perfect leads, the scattering
states at the Fermi energy defines N ∝ Ld−1 channels. Trans-
port properties are then characterized by the 2N × 2N transfer
matrix M that connects the outgoing flux to the incoming
flux across Lz. Flux conservation and time-reversal symmetry
allow one to write M in the general form [25]

M =
(

u 0
0 u∗

)(√
1 + λ

√
λ√

λ
√

1 + λ

)(
v 0
0 v∗

)
, (C1)

where u, v are N × N unitary matrices and λ is a diagonal
matrix with non-negative elements. It turns out that in terms
of the parameters of M, the N × N matrix tt†, where t is the
N-channel transmission matrix, can be written as [12]

tt† = v∗(1 + λ)−1v. (C2)

Diagonalizing tt† gives us λ as well as all elements of the
N × N matrix v. The conductance g is then given by g =
Tr(tt†) = ∑N

a=1 1/(1 + λa), while the matrix v contains infor-
mation about the dimensionality of the system in the following
way [12].

Consider the N × N matrix

γab = 2Kab

Kaa
; Kab =

〈
N∑

α=1

|vaα|2|vbα|2
〉
, (C3)

where the angular bracket represents an ensemble average.
This matrix appears in the generalized DMPK (Dorokhov-
Mello-Pereyra-Kumar) equation [12,15,16],

∂ p({λ})

∂ (Lz/l )
=

N∑
a=1

Kaa
∂

∂λa
λa(1 + λa)

×
[

∂

∂λa
−

∑
b�=a

γab

λa − λb

]
p({λ}) (C4)

with l being the mean free path, whose solution gives the
evolution of the jpd p({λa}) of the eigenvalues λ with length,
and where the length and disorder dependence of the matrix
γab contain information about dimensionality.

For example in Q1D, for a wire of cross section L × L
and length Lz with L 	 Lz, the localization length ξ is much
larger than the transverse length, ξ  L, and all channels of
transport become equivalent (this is the definition of a Q1D
system). This implies that the eigenvectors of v are isotropic.
In this case [12],

KQ1D
ab = 1 + δab

N + 1
, γ

Q1D
ab = 1. (C5)

Note that γ Q1D = 1 is true for all disorder. This is the reason
why a jpd of the form Eq. (5.1) with γ = 1 implies Q1D. The
metal-to-insulator crossover in this case is rather unphysical; it
occurs with increasing Lz; Lz 	 ξ being a metal while Lz  ξ

is an insulator [17]. (Note that our formulation is based on a
large N limit of the jpd, so it is not valid for strictly d = 1.)

In higher dimensions, in the absence of isotropy, the matrix
γab is much more complicated and cannot be obtained analyt-
ically. However, within a tight-binding Anderson model with
random site energies (with strength W ) and nearest-neighbor
hopping elements, which shows the Anderson metal-insulator
transition at a critical disorder Wc, it is possible to study the
matrix Kab in the space representation (as opposed to a chan-
nel representation) numerically as a function of both length
and disorder. This was done in detail explicitly for d = 3 in
Ref. [12]. The results show that to a good approximation, one
can consider only the most dominant element γ12 = γ 3D. In-
deed, this one parameter generalization of the DMPK equation
was originally conjectured to be applicable beyond the Q1D
regime [14]. With this approximation for γ12, the solution to
the generalized DMPK equation Eq. (C5) gives jpd for 3D
systems as shown in Eq. (5.1) where γ = γ 3D. A finite-size
scaling analysis shows that for large L = Lz, as disorder is
increased, γ 3D � 1 for W < Wc, and γ 3D 	 1 for W > Wc,
dropping sharply near W = Wc (see, e.g., Figs. 7 and 21 in
Ref. [12]). The phenomenological model considered in Sec. V
uses these results to relate the parameter �(γ ) to disorder in
3D.

The matrix Kab has not been studied in any other di-
mensions. However, given the fact that in 2D in the limit
L = Lz → ∞ the system is always an insulator for all finite
disorder, one can conjecture that γ 2D remains much smaller
than 1 for all disorder, never reaching the metallic limit. If the
explicit disorder dependence of γ 2D is known, our formulation
can be adapted to study the conductance distribution P(g) in
2D. Similarly, given that metal-insulator transitions exist for
all higher dimensions, we expect that the disorder dependence
of γ dD for d > 3 will be qualitatively similar to γ 3D, but with
different (dimension dependent) critical disorder Wc.

In summary, for an arbitrary d-dimensional conductor, the
current formulation can be used to obtain the full distribution
of conductances for all disorder if the explicit disorder depen-
dence of the parameter γ dD can be obtained from numerical
studies of the matrix K using the tight-binding Anderson
model in d dimensions.
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